LSTM中文新闻分类源码详解

LSTM中文新闻分类

  • 一、导包
  • 二、读取数据
  • 三、数据预处理
    • 1.分词、去掉停用词和数字、字母转换成小写等
    • 2.新闻文本标签数值化
  • 三、创建词汇表/词典
    • 1.data.Field()
    • 2.空格切分等
    • 3.构建词汇表/词典
      • 使用训练集构建单词表,vectors=None:没有使用预训练好的词向量,而是使用的是随机初始化的词向量,默认是100维
    • 这里面的20002,多的那两个应该是
  • 四、构造数据集迭代器,方便批处理
    • batch.cutword[0]和batch.cutword[1]
      • batch.cutword[0]:表示的是一批数据也就是64条新闻,每条新闻都会被分词,分成一个一个的词语,每个词语在词典中的索引,最后面的1表示的是不足400,填充的<pad>对应在词典中的索引为1。
      • batch.cutword[1]:表示的是一批数据也就是64条新闻,每条新闻对应所有新闻中的索引号。
  • 五、搭建LSTM网络
    • r_out, (h_n, h_c)分别是:
      • r_out是最终输出结果y(根据今天,昨天和日记)
      • h_n是隐藏层的输出结果s(根据昨天)
      • h_c是长期信息的输出结果c(根据日记)
  • 六、LSTM网络的训练
  • 七、LSTM网络的测试

一、导包

%config InlineBackend.figure_format = 'retina'
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.font_manager import FontProperties 
fonts = FontProperties(fname = "/Library/Fonts/华文细黑.ttf")
import re   
import string  
import copy   
import time   
from sklearn.metrics import accuracy_score,confusion_matrix   
import torch
from torch import nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as Data
import jieba
jieba.setLogLevel(jieba.logging.INFO)
from torchtext.legacy import data
from torchtext.vocab import Vectors
#从 PyTorch 的拓展库 torchtext 中导入了 Vectors 类,该类用于处理词向量(word embeddings)

二、读取数据

train_df = pd.read_csv("data/lstm/cnews/cnews.train.txt",sep="\t",
                       header=None,names = ["label","text"])
val_df = pd.read_csv("data/lstm/cnews/cnews.val.txt",sep="\t",
                       header=None,names = ["label","text"])
test_df = pd.read_csv("data/lstm/cnews/cnews.test.txt",sep="\t",
                       header=None,names = ["label","text"])
train_df.head(5)

在这里插入图片描述

三、数据预处理

stop_words = pd.read_csv("data/lstm/cnews/中文停用词库.txt",
                         header=None,names = ["text"])

1.分词、去掉停用词和数字、字母转换成小写等

## 对中文文本数据进行预处理,去除一些不需要的字符,分词,去停用词,等操作
def chinese_pre(text_data):
    ## 字母转化为小写,去除数字,
    text_data = text_data.lower()
    text_data = re.sub("\d+", "", text_data)
    ## 分词,使用精确模式
    text_data = list(jieba.cut(text_data,cut_all=False)) 
    ## 去停用词和多余空格
    text_data = [word.strip() for word in text_data if word not in stop_words.text.values]
    ## 处理后的词语使用空格连接为字符串
    text_data = " ".join(text_data)
    return text_data
train_df["cutword"] = train_df.text.apply(chinese_pre)
val_df["cutword"] = val_df.text.apply(chinese_pre)
test_df["cutword"] = test_df.text.apply(chinese_pre)
## 预处理后的结果保存为新的文件
train_df[["label","cutword"]].to_csv("data/lstm/cnews_train.csv",index=False)
val_df[["label","cutword"]].to_csv("data/lstm/cnews_val.csv",index=False)
test_df[["label","cutword"]].to_csv("data/lstm/cnews_test.csv",index=False)
train_df.cutword.head()

在这里插入图片描述

train_df = pd.read_csv("data/lstm/cnews_train.csv")
val_df = pd.read_csv("data/lstm/cnews_val.csv")
test_df = pd.read_csv("data/lstm/cnews_test.csv")

2.新闻文本标签数值化

labelMap = {"体育": 0,"娱乐": 1,"家居": 2,"房产": 3,"教育": 4,
            "时尚": 5,"时政": 6,"游戏": 7,"科技": 8,"财经": 9}
train_df["labelcode"] =train_df["label"].map(labelMap)
val_df["labelcode"] =val_df["label"].map(labelMap)
test_df["labelcode"] =test_df["label"].map(labelMap)
train_df.head()

在这里插入图片描述

train_df[["labelcode","cutword"]].to_csv("data/lstm/cnews_train2.csv",index=False)
val_df[["labelcode","cutword"]].to_csv("data/lstm/cnews_val2.csv",index=False)
test_df[["labelcode","cutword"]].to_csv("data/lstm/cnews_test2.csv",index=False)

三、创建词汇表/词典

1.data.Field()

data.Field参数与方法详解

2.空格切分等

按照空格进行分词,cutword是序列数据,labelcode不是序列数据

## 使用torchtext库进行数据准备
# 定义文件中对文本和标签所要做的操作
"""
sequential=True:表明输入的是序列数据
tokenize="spacy":使用spacy切分词语
use_vocab=True: 创建词汇表
batch_first=True: batch优先的数据方式
fix_length=400 :每个句子固定长度为400,不足会默认使用 <pad> 符号填充
"""
## 定义文本切分方法,因为前面已经做过处理,所以直接使用空格切分即可
mytokenize = lambda x: x.split()
TEXT = data.Field(sequential=True, tokenize=mytokenize, 
                  include_lengths=True, use_vocab=True,
                  batch_first=True, fix_length=400)
LABEL = data.Field(sequential=False, use_vocab=False, 
                   pad_token=None, unk_token=None)
## 对所要读取的数据集的列进行处理
text_data_fields = [
    ("labelcode", LABEL), # 对标签的操作
    ("cutword", TEXT) # 对文本的操作
]
## 读取数据
traindata,valdata,testdata = data.TabularDataset.splits(
    path="data/lstm", format="csv", 
    train="cnews_train2.csv", fields=text_data_fields, 
    validation="cnews_val2.csv",
    test = "cnews_test2.csv", skip_header=True
)
len(traindata),len(valdata),len(testdata)

在这里插入图片描述

## 检查一个样本的标签和文本
em = traindata.examples[0]
print(em.labelcode)
print(em.cutword)

在这里插入图片描述

3.构建词汇表/词典

使用训练集构建单词表,vectors=None:没有使用预训练好的词向量,而是使用的是随机初始化的词向量,默认是100维

TEXT.build_vocab(traindata,max_size=20000,vectors = None)
LABEL.build_vocab(traindata)
## 可视化训练集中的前50个高频词
word_fre = TEXT.vocab.freqs.most_common(n=50)
word_fre = pd.DataFrame(data=word_fre,columns=["word","fre"])
word_fre.plot(x="word", y="fre", kind="bar",legend=False,figsize=(12,7))
plt.xticks(rotation = 90,fontproperties = fonts,size = 10)
plt.show()

print("词典的词数:",len(TEXT.vocab.itos))
print("前10个单词:\n",TEXT.vocab.itos[0:10])
## 类别标签的数量和类别
print("类别标签情况:",LABEL.vocab.freqs)

在这里插入图片描述在这里插入图片描述

这里面的20002,多的那两个应该是

在这里插入图片描述

四、构造数据集迭代器,方便批处理

## 定义一个迭代器,将类似长度的示例一起批处理。
BATCH_SIZE = 64
train_iter = data.BucketIterator(traindata,batch_size = BATCH_SIZE)
val_iter = data.BucketIterator(valdata,batch_size = BATCH_SIZE)
test_iter = data.BucketIterator(testdata,batch_size = BATCH_SIZE)
##  获得一个batch的数据,对数据进行内容进行介绍
for step, batch in enumerate(train_iter):  
    if step > 0:
        break
## 针对一个batch 的数据,可以使用batch.labelcode获得数据的类别标签
print("数据的类别标签:\n",batch.labelcode)
## batch.cutword[0]是文本对应的标签向量
print("数据的尺寸:",batch.cutword[0].shape)
## batch.cutword[1] 对应每个batch使用的原始数据中的索引
print("数据样本数:",len(batch.cutword[1]))

在这里插入图片描述

batch.cutword[0]和batch.cutword[1]

batch.cutword[0]:表示的是一批数据也就是64条新闻,每条新闻都会被分词,分成一个一个的词语,每个词语在词典中的索引,最后面的1表示的是不足400,填充的对应在词典中的索引为1。

batch.cutword[1]:表示的是一批数据也就是64条新闻,每条新闻对应所有新闻中的索引号。

在这里插入图片描述

##  获得一个batch的数据,对数据进行内容进行介绍
for step, batch in enumerate(train_iter):  
    textdata,target = batch.cutword[0],batch.labelcode.view(-1)
    if step > 0:
        break
# ## 针对一个batch 的数据,可以使用batch.labelcode获得数据的类别标签
# print("数据的类别标签:\n",batch.labelcode)
# ## batch.cutword[0]是文本对应的标签向量
# print("数据的尺寸:",batch.cutword[0].shape)
# ## batch.cutword[1] 对应每个batch使用的原始数据中的索引
# print("数据样本数:",len(batch.cutword[1]))

五、搭建LSTM网络

class LSTMNet(nn.Module):
    def __init__(self, vocab_size,embedding_dim, hidden_dim, layer_dim, output_dim):
        """
        vocab_size:词典长度
        embedding_dim:词向量的维度
        hidden_dim: RNN神经元个数
        layer_dim: RNN的层数
        output_dim:隐藏层输出的维度(分类的数量)
        """
        super(LSTMNet, self).__init__()
        self.hidden_dim = hidden_dim ## RNN神经元个数
        self.layer_dim = layer_dim ## RNN的层数
        ## 对文本进行词向量处理
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        # LSTM + 全连接层
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, layer_dim,
                            batch_first=True)
        self.fc1 = nn.Linear(hidden_dim, output_dim)
    def forward(self, x):
        embeds = self.embedding(x)
        # r_out shape (batch, time_step, output_size)
        # h_n shape (n_layers, batch, hidden_size)   LSTM 有两个 hidden states, h_n 是分线, h_c 是主线
        # h_c shape (n_layers, batch, hidden_size)
        r_out, (h_n, h_c) = self.lstm(embeds, None)   # None 表示 hidden state 会用全0的 state
        # 选取最后一个时间点的out输出
        out = self.fc1(r_out[:, -1, :]) 
        return out
   

r_out, (h_n, h_c)分别是:

r_out是最终输出结果y(根据今天,昨天和日记)

h_n是隐藏层的输出结果s(根据昨天)

h_c是长期信息的输出结果c(根据日记)

vocab_size = len(TEXT.vocab)
embedding_dim = 100
hidden_dim = 128
layer_dim = 1
output_dim = 10
lstmmodel = LSTMNet(vocab_size, embedding_dim, hidden_dim, layer_dim, output_dim)
lstmmodel

在这里插入图片描述

六、LSTM网络的训练

## 定义网络的训练过程函数
def train_model2(model,traindataloader, valdataloader,criterion, 
                 optimizer,num_epochs=25,):
    """
    model:网络模型;traindataloader:训练数据集;
    valdataloader:验证数据集,;criterion:损失函数;optimizer:优化方法;
    num_epochs:训练的轮数
    """
    train_loss_all = []
    train_acc_all = []
    val_loss_all = []
    val_acc_all = []
    since = time.time()
    for epoch in range(num_epochs):
        print('-' * 10)
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        # 每个epoch有两个阶段,训练阶段和验证阶段
        train_loss = 0.0
        train_corrects = 0
        train_num = 0
        val_loss = 0.0
        val_corrects = 0
        val_num = 0
        model.train() ## 设置模型为训练模式
        for step,batch in enumerate(traindataloader):
            textdata,target = batch.cutword[0],batch.labelcode.view(-1)
            out = model(textdata)
            pre_lab = torch.argmax(out,1) # 预测的标签
            loss = criterion(out, target) # 计算损失函数值
            optimizer.zero_grad()   #梯度清零     
            loss.backward()       #损失函数反向传播
            optimizer.step()        #更新梯度
            train_loss += loss.item() * len(target)
            train_corrects += torch.sum(pre_lab == target.data)
            train_num += len(target)
        ## 计算一个epoch在训练集上的损失和精度
        train_loss_all.append(train_loss / train_num)
        train_acc_all.append(train_corrects.double().item()/train_num)
        print('{} Train Loss: {:.4f}  Train Acc: {:.4f}'.format(
            epoch, train_loss_all[-1], train_acc_all[-1]))
        
        ## 计算一个epoch的训练后在验证集上的损失和精度
        model.eval() ## 设置模型为训练模式评估模式 
        for step,batch in enumerate(valdataloader):
            textdata,target = batch.cutword[0],batch.labelcode.view(-1)
            out = model(textdata)
            pre_lab = torch.argmax(out,1)
            loss = criterion(out, target)   
            val_loss += loss.item() * len(target)
            val_corrects += torch.sum(pre_lab == target.data)
            val_num += len(target)
        ## 计算一个epoch在训练集上的损失和精度
        val_loss_all.append(val_loss / val_num)
        val_acc_all.append(val_corrects.double().item()/val_num)
        print('{} Val Loss: {:.4f}  Val Acc: {:.4f}'.format(
            epoch, val_loss_all[-1], val_acc_all[-1]))
    train_process = pd.DataFrame(
        data={"epoch":range(num_epochs),
              "train_loss_all":train_loss_all,
              "train_acc_all":train_acc_all,
              "val_loss_all":val_loss_all,
              "val_acc_all":val_acc_all})  
    return model,train_process
# 定义优化器
optimizer = torch.optim.Adam(lstmmodel.parameters(), lr=0.0003)  
loss_func = nn.CrossEntropyLoss()   # 损失函数
## 对模型进行迭代训练,对所有的数据训练EPOCH轮
lstmmodel,train_process = train_model2(
    lstmmodel,train_iter,val_iter,loss_func,optimizer,num_epochs=20)

在这里插入图片描述
在这里插入图片描述

## 输出结果保存和数据保存
torch.save(lstmmodel,"data/lstm/lstmmodel.pkl")
## 导入保存的模型
lstmmodel = torch.load("data/lstm/lstmmodel.pkl")
lstmmodel
## 保存训练过程
train_process.to_csv("data/lstm/lstmmodel_process.csv",index=False)
train_process

在这里插入图片描述

## 可视化模型训练过程中
plt.figure(figsize=(18,6))
plt.subplot(1,2,1)
plt.plot(train_process.epoch,train_process.train_loss_all,
         "r.-",label = "Train loss")
plt.plot(train_process.epoch,train_process.val_loss_all,
         "bs-",label = "Val loss")
plt.legend()
plt.xlabel("Epoch number",size = 13)
plt.ylabel("Loss value",size = 13)
plt.subplot(1,2,2)
plt.plot(train_process.epoch,train_process.train_acc_all,
         "r.-",label = "Train acc")
plt.plot(train_process.epoch,train_process.val_acc_all,
         "bs-",label = "Val acc")
plt.xlabel("Epoch number",size = 13)
plt.ylabel("Acc",size = 13)
plt.legend()
plt.show()

在这里插入图片描述

七、LSTM网络的测试

## 对测试集进行预测并计算精度
lstmmodel.eval() ## 设置模型为训练模式评估模式 
test_y_all = torch.LongTensor()
pre_lab_all = torch.LongTensor()
for step,batch in enumerate(test_iter):
    textdata,target = batch.cutword[0],batch.labelcode.view(-1)
    out = lstmmodel(textdata)
    pre_lab = torch.argmax(out,1)
    test_y_all = torch.cat((test_y_all,target)) ##测试集的标签
    pre_lab_all = torch.cat((pre_lab_all,pre_lab))##测试集的预测标签

acc = accuracy_score(test_y_all,pre_lab_all)
print("在测试集上的预测精度为:",acc)
## 计算混淆矩阵并可视化
class_label = ["体育","娱乐","家居","房产","教育",
               "时尚","时政","游戏","科技","财经"]
conf_mat = confusion_matrix(test_y_all,pre_lab_all)
df_cm = pd.DataFrame(conf_mat, index=class_label, columns=class_label)
heatmap = sns.heatmap(df_cm, annot=True, fmt="d",cmap="YlGnBu")
heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0,
                             ha='right',fontproperties = fonts)
heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45,
                             ha='right',fontproperties = fonts)
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/280705.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AI人工智能大模型讲师叶梓《基于人工智能的内容生成(AIGC)理论与实践》培训提纲

【课程简介】 本课程介绍了chatGPT相关模型的具体案例实践&#xff0c;通过实操更好的掌握chatGPT的概念与应用场景&#xff0c;可以作为chatGPT领域学习者的入门到进阶级课程。 【课程时长】 1天&#xff08;6小时/天&#xff09; 【课程对象】 理工科本科及以上&#xff0…

亚信安慧AntDB数据库引领数字时代通信创新

在数字经济与实体经济深度融合的时代&#xff0c;通信行业正迎来前所未有的新机遇。特别是在中国信通院的预测中&#xff0c;2027年5G专网市场规模预计将达到802亿元&#xff0c;呈现出显著的增长态势&#xff0c;年复合增长率高达42%。 亚信安慧AntDB数据库一直致力于紧跟科技…

【JVM】一篇通关JMM内存模型

JMM内存模型 1. 原子性1-1. 问题分析1-2. 问题解决 2. 可见性2-1. 问题分析2-2. 问题解决 3. 有序性3-1. 问题分析3-2. 问题解决 4. CAS与原子性5. synchronized 优化 1. 原子性 很多人将【java 内存结构】与【java 内存模型】傻傻分不清&#xff0c;【java 内存模型】是 Java…

【模拟电路】常见电学定律 戴维宁定理、诺顿定理、基尔霍夫定律

一、戴维宁定理 二、诺顿定理 三、基尔霍夫定律 一、戴维宁定理 任何复杂电路可以等效为一个电压源和一个电阻器组成 德维宁定理&#xff08;Thevenin’s Theorem&#xff09;是电路理论中的一个基本定理&#xff0c;它提供了一种简化复杂线性电路的方法。德维宁定理的主要思…

【网络安全】网络隔离设备

一、网络和终端隔离产品 网络和终端隔离产品分为终端隔离产品和网络隔离产品两大类。终端隔离产品一般指隔离卡或者隔离计算机。网络隔离产品根据产品形态和功能上的不同&#xff0c;该类产品可以分为协议转换产品、网闸和网络单向导入产品三种。 图1为终端隔离产品的一个典型…

机器学习系列13:通过随机森林获取特征重要性

我们已经知道通过 L1 正则化和 SBS 算法可以用来做特征选择。 我们还可以通过随机森林从数据集中选择相关的特征。随机森林里面包含了多棵决策树&#xff0c;我们可以通过计算特征在每棵决策树决策过程中所产生的的信息增益平均值来衡量该特征的重要性。 你可能需要参考&…

用IDEA创建/同步到gitee(码云)远程仓库(保姆级详细)

前言&#xff1a; 笔者最近在学习java&#xff0c;最开始在用很笨的方法&#xff1a;先克隆远程仓库到本地&#xff0c;再把自己练习的代码从本地仓库上传到远程仓库&#xff0c;很是繁琐。后发现可以IDEA只需要做些操作可以直接把代码上传到远程仓库&#xff0c;也在网上搜了些…

2023年03月22日_腾讯2022年财报解读

文章目录 1 - 腾讯营收增长停滞2 - 腾讯游戏业务低迷3 - 小程序和视频号拉动广告增长4 - 腾讯云和金融科技表现不佳5 - 营销费用减半6 - 裁员但福利上涨 2023年03月22日 今天晚上呢 腾讯披露了2022年第四季度和全年的财报 看过之后呢不禁要说 腾讯在2022年真的是过得不容易啊…

简单vlan划分和dhcp中继(Cisco Packet Tracer模拟)

文章目录 1. 前言2. 功能实现2.1. dhcp服务器接入2.2. 学校web服务器2.3. 设置学校dns服务器2.4. 设置线路冗余2.5. 配置ac。 1. 前言 在这里我们的计网作业是使用思科的Cisco Packet Tracer进行对校园网的简单规划&#xff0c;这里我对校园网进行了简单的规划&#xff0c;功能…

IDEA JAVA Spring Boot运行Hello World(1.8)

参考资料&#xff1a; Spring Boot运行Hello World - 知乎https://blog.csdn.net/weixin_44005516/article/details/108293228(解决bug)SpringBoot入门第一章&#xff1a;Hello World-java教程-PHP中文网 (仅参考如何运行程序)java 8安装教程 java 8安装教程_java8安装-CSDN博…

数据结构(五)——初识线性表

&#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是尘觉&#xff0c;希望我的文章可以帮助到大家&#xff0c;您的满意是我的动力&#x1f609; 在csdn获奖荣誉: &#x1f3c6;csdn城市之星2名 ⁣⁣⁣⁣ ⁣⁣⁣⁣ ⁣⁣⁣⁣ ⁣⁣⁣⁣ ⁣⁣⁣⁣ ⁣⁣⁣⁣ ⁣⁣⁣⁣ …

C#语言发展历程(1-7)

一、类型发展 C#1中是没有泛型的 在C#2中在逐渐推出泛型。C#2还引入了可空类型。 示例&#xff1a;C#泛型&#xff08;详解&#xff09;-CSDN博客 1 C#3&#xff1a;引入了匿名类型、和隐式的局部变量&#xff08;var&#xff09; 匿名类型&#xff1a;我们主要是使用在LIN…

宠物救助上门喂养系统宠物领养宠物寄养寻宠小程序宠物社区系统宠物托运宠物殡葬源码

后端php 前端uniapp mysql数据库 主要功能介绍&#xff1a; 1.根据当前位置 支持多城市切换 2.支持首页公告实时显示 3.支持 宠物救助&#xff0c;上门喂养&#xff0c;宠物领养&#xff0c;宠物寄养&#xff0c;寻宠&#xff0c;宠物社区&#xff0c;宠物托运&#xff…

SpringAMQP的使用方式

MQ介绍 MQ&#xff0c;中文是消息队列&#xff08;MessageQueue&#xff09;&#xff0c;字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。 比较常见的MQ实现&#xff1a; ActiveMQ RabbitMQ RocketMQ Kafka 几种常见MQ的对比&#xff1a; RabbitMQActiveM…

django基础学习

django基础学习 文章目录 django基础学习django框架urls.py将请求发送到正确的视图views.py处理请求models.py定义数据模型根据models查询数据HTML模板呈现数据 Django项目结构创建虚拟环境下载django创建站点创建应用settings.py项目设置 通用类别视图会话框架身份验证视图使用…

探索 Pinia:简化 Vue 状态管理的新选择(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

项目中使用Java中List.subList()的注意事项

使用介绍 在Java中&#xff0c;subList是List接口的一个方法&#xff0c;用于获取原始列表的子列表 方法的声明如下 List<E> subList(int fromIndex, int toIndex);fromIndex&#xff1a;起始索引&#xff08;包括&#xff09;toIndex&#xff1a;结束索引&#xff08…

dash 中的模式匹配回调函数Pattern-Matching Callbacks 8

模式匹配 模式匹配回调选择器 MATCH、ALL 和 ALLSMALLER 允许您编写可以响应或更新任意或动态数量组件的回调函数。 此示例呈现任意数量的 dcc. Dropdown 元素&#xff0c;并且只要任何 dcc. Dropdown 元素发生更改&#xff0c;就会触发回调。尝试添加几个下拉菜单并选择它们的…

Java项目:101SpringBoot仓库管理系统

博主主页&#xff1a;Java旅途 简介&#xff1a;分享计算机知识、学习路线、系统源码及教程 文末获取源码 一、项目介绍 仓库管理系统基于SpringBootMybatis开发&#xff0c;系统使用shiro框架做权限安全控制&#xff0c;超级管理员登录系统后可根据自己的实际需求配角色&…

(四)开启定时器2中断

文章目录 定时器2中断的开启借用isp软件生成代码下面进行定时器2中断开启 最终开启定时器2中断的代码定时器2中断服务函数的编写查手册得到定时器2中断查询次序号查手册得次序号为12通过公式计算 中断服务函数编写 结合之前学的点亮LED现象演示 定时器2中断的开启 借用isp软件…