基于MINIST的手写数字体识别

一、算法简述 

网络结构设计

通过创建MnistNet类,定义了包含两个卷积层和两个全连接层的深度神经网络。这个网络的设计灵感来自于经典的CNN结构,其中卷积层用于提取图像特征,而全连接层则用于将这些特征映射到最终的类别。

卷积与池化

卷积操作通过在输入图像上滑动卷积核,有效地捕捉图像的局部特征,例如边缘、纹理等。这种局部感知能力使得网络能够更好地理解输入图像的结构信息,从而更好地进行字符识别。在卷积操作后,激活函数的引入是为了引入非线性特性。ReLU激活函数通过将负值映射为零,保留正值,引入了非线性变换。这种非线性变换对于学习更加复杂的特征表示至关重要。池化层则在特征图上进行降维操作,最常见的是最大池化。最大池化通过在每个池化窗口中选择最大值,减小了特征图的尺寸,有助于提高模型的计算效率。此外,最大池化也有助于保留图像中最显著的特征,使网络对于空间变化更加鲁棒。

全连接层与激活函数

全连接层负责整合卷积层提取的特征,通过ReLU激活函数引入非线性。最终的全连接层输出通过Log_Softmax函数处理,转换为类别的概率分布。

Log_Softmax其实就是对Softmax取对数,表达式如下所示:

尽管,数学上log_Softmax是对Softmax取对数,但是,实际操作中是通过下面的式子来实现的:

其中,M = max(z_{i}),i=(1,...,K)在加快运算速度的同时,保证数据的稳定性。

前向传播

在前向传播中,定义了输入数据如何在网络中传播。这个方法描述了数据如何通过卷积层、池化层和全连接层,最后经过Log Softmax函数的处理,网络的输出被转换为概率分布。Log Softmax对神经网络的输出进行归一化,使得每个类别的预测概率都落在 (0, 1) 的范围内,同时通过取对数的方式方便计算和优化。这一步为多类别分类问题提供了一种有效的建模方式。

网络参数

通过named_parameters方法,可以打印网络中所有参数的名称、值和大小,深入了解网络结构和模型的可训练参数,这样能够详细了解神经网络的结构。这对于验证网络是否按照预期的方式组织和连接层次非常有用。这种审查有助于确保网络的设计符合预期,并且每一层都按照计划进行连接。

MnistNet(
  (conv1): Conv2d(1, 10, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(10, 20, kernel_size=(3, 3), stride=(1, 1))
  (fc1): Linear(in_features=2000, out_features=500, bias=True)
  (fc2): Linear(in_features=500, out_features=10, bias=True)
)

二、设计步骤 

本设计流程如下所示:

数据可视化及训练测试集划分

通过pytorch官方下载的MINIST数据集是以二进制的形式存放的,将数据集中的数字图像转换为jpg图像格式,可以更直观地展示和理解数据。更容易通过观察图像来理解和识别数字,而不是处理抽象的数字矩阵。在转化过程中,将图像路径和标签信息写入相应的文本文件中,以便后续的数据加载。

# Data_preprocessing.py

import torch
from torchvision import datasets, transforms
import os
from skimage import io
import torchvision.datasets.mnist as mnist

root = r"D:\PythonProject\pythonProject2\MNIST_pytorch\data\MNIST\raw"

#           下载测试集               #
train_dataset = datasets.MNIST('./data', train=True,
                               transform=transforms.Compose([
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.1307,), (0.3081,))
                               ]),
                                download=True)

test_dataset = datasets.MNIST('./data', train=False,
                               transform=transforms.Compose([
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.1307,), (0.3081,))
                               ]),
                                download=True)

train_set = (
    mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')),
    mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte'))
        )

test_set = (
    mnist.read_image_file(os.path.join(root, 't10k-images-idx3-ubyte')),
    mnist.read_label_file(os.path.join(root, 't10k-labels-idx1-ubyte'))
        )

def minist_to_img(train=True):
    if train:
        f = open(root+'train.txt','w')
        data_path=root+'/train/'
        if not os.path.exists(data_path):
            os.makedirs(data_path)
        for i, (img, label) in enumerate(zip(train_set[0], train_set[1])):
            img_path=data_path+str(i)+'.jpg'
            io.imsave(img_path, img.numpy())
            f.write(img_path+' ' + str(int(label)) + '\n')
        f.close()
    else:
        f = open(root + 'test.txt', 'w')
        data_path = root + '/test/'
        if not os.path.exists(data_path):
            os.makedirs(data_path)
        for i, (img,label) in enumerate(zip(test_set[0], test_set[1])):
            img_path = data_path + str(i) + '.jpg'
            io.imsave(img_path, img.numpy())
            f.write(img_path + ' ' + str(int(label)) + '\n')
        f.close()

#           数据划分                #
minist_to_img(True)    #  训练集
minist_to_img(False)   #  测试集

自定义数据加载器

# utils.py

import torch
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image

class MINISTDataset(Dataset):
    def __init__(self, txtpath, transform=None):
        txt = open(txtpath, 'r')
        self.images = []
        for line in txt:
            line = line.strip('\n').rstrip().split()
            self.images.append((line[0], int(line[1])))
        self.transform = transform

    def __len__(self):
        return len(self.images)

    def __getitem__(self, idx):
        imgpath, label = self.images[idx]
        img = Image.open(imgpath).convert('L')
        if self.transform is not None:
            img = self.transform(img)
        return img, torch.tensor(label)


def MINISTDataloader(train_txtpath, test_txtpath, transform=None, batch_size=512):
    train_data = MINISTDataset(train_txtpath, transform)
    test_data = MINISTDataset(test_txtpath, transform)
    train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(dataset=test_data, batch_size=batch_size)
    return train_loader, test_loader


if __name__=="__main__":

    train_txtpath = r"D:\PythonProject\pythonProject2\MNIST_pytorch\data\MNIST\rawtrain.txt"
    test_txtpath = r"D:\PythonProject\pythonProject2\MNIST_pytorch\data\MNIST\rawtest.txt"
    transform=transforms.Compose([transforms.ToTensor(),
                                  transforms.Normalize((0.1307,), (0.3081,))
                                   ])
    train_loader, test_loader = MINISTDataloader(train_txtpath, test_txtpath, transform=transform, batch_size=512)
    print(len(train_loader))
    img, label = train_loader
    print(img, label)

通过包含图像文件路径和标签信息的文本文件路径来自定义数据加载器。在这里数据集格式每行包含一个图像文件路径和对应的标签信息,两者之间使用空格或其他分隔符分隔。例如,一行可以是:path/to/image1.jpg 0

其中 path/to/image1.jpg 是图像文件的路径,0是该图像的标签。通过索引加载将图像进行灰度,张量,归一化处理,对标签进行张量处理。最后,通过迭代数据加载器,可以获取包含图像和标签的批次数据,用于模型的训练和评估。

自定义MINIST网络

# net.py

import torch.nn as nn
import torch.nn.functional as F

class MnistNet(nn.Module):
    def __init__(self):
        super(MnistNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, 5)
        self.conv2 = nn.Conv2d(10, 20, 3)
        self.fc1 = nn.Linear(20 * 10 * 10, 500)
        self.fc2 = nn.Linear(500, 10)  # 10分类

    def forward(self, x):
        in_size = x.size(0)           # BATCH_SIZE=512,输入的x:512*1*28*28。
        out = self.conv1(x)           # batch*1*28*28 -> batch*10*24*24(28x28的图像经过一次核为5x5的卷积,输出变为24x24)
        out = F.relu(out)             # batch*10*24*24
        out = F.max_pool2d(out, 2, 2)  # batch*10*24*24 -> batch*10*12*12(2*2的池化层会减半)
        out = self.conv2(out)         # batch*10*12*12 -> batch*20*10*10(再卷积一次,核的大小是3)
        out = F.relu(out)             # batch*20*10*10
        out = out.view(in_size, -1)   # batch*20*10*10 -> batch*2000(out的第二维是-1,进行自动推算)
        out = self.fc1(out)           # batch*2000 -> batch*500通过
        out = F.relu(out)             # batch*500
        out = self.fc2(out)           # batch*500 -> batch*10
        out = F.log_softmax(out, dim=1)  # 计算log(softmax(x))
        return out

if __name__=="__main__":
    net = MnistNet()
    print(net)
    for name, parameter in net.named_parameters():
        print(name, parameter, parameter.size())

在网络层结构,创建了两个卷积层conv1与conv2 ,一个输入通道数为1,输出通道数为10,卷积核大小为5x5。另一个输入通道数为10,输出通道数为20,卷积核大小为3x3。以及两个全连接层,一个输入大小为 20x10x10,输出大小为 500。另一个输入大小为 500,输出大小为 10。这里已知图像大小为28*28,批量假设为512,再经过一次核为5*5的卷积,输出变为24*24,通道数变为10,经过2*2最大池化层图像大小减半变为12*12,再卷积一次,核的大小为3,图像大小变为10*10,通道数变为20,然后经过relu非线性变化,但通道和尺寸均不变。最后将其平铺输入全连接层,起间经过一次relu非线性转换,通过Log_softmax计算概率。

神经网络训练与测试脚本解析

定义MinstNet,优化算法,损失函数,检查设备是否有cuda,使用自定义的数据加载器,对数据进行转换,将其转换为张量并进行像素值归一化。

# run.py

import torch
import torch.optim as optim
import torch.nn.functional as F

from MNIST_pytorch.utils import MINISTDataloader
from MNIST_pytorch.net import MnistNet
from torchvision import transforms

batch_size = 512
epochs = 20
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = MnistNet()
net = net.to(device)
optimizer = optim.Adam(net.parameters())
train_txtpath = r"D:\PythonProject\pythonProject2\MNIST_pytorch\data\MNIST\rawtrain.txt"
test_txtpath = r"D:\PythonProject\pythonProject2\MNIST_pytorch\data\MNIST\rawtest.txt"
transform=transforms.Compose([transforms.ToTensor(),
                              transforms.Normalize((0.1307,), (0.3081,))
                               ])

def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if(batch_idx+1)%30 == 0:
            print('当前Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.max(1, keepdim=True)[1] # 找到概率最大的下标
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)
    acc = correct / len(test_loader.dataset) * 100.
    print('\n验证集: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct,
        len(test_loader.dataset), acc))

if __name__=="__main__":
    train_loader, test_loader = MINISTDataloader(train_txtpath, test_txtpath, transform, batch_size)
    for epoch in range(1, epochs + 1):
        train(net, device, train_loader, optimizer, epoch)
        test(net, device, test_loader)

        model_save_path = r"logs/model_weights.pth"
        torch.save(net.state_dict(), model_save_path)
        print(f'Model weights saved to {model_save_path}')

训练阶段,迭代训练数据集的批次。对于每个批次,执行以下操作:

  • 将输入数据和目标标签移动到指定的设备。
  • 将模型参数的梯度归零。
  • 通过模型传递输入数据以获得预测。
  • 计算预测和实际标签之间的负对数似然损失。
  • 反向传播梯度并使用优化器更新模型参数。
  • 每30个批次打印一次训练进度。
# val.py

import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
import os
from MNIST_pytorch.utils import MINISTDataloader
from MNIST_pytorch.net import MnistNet
from torchvision import transforms
from matplotlib.font_manager import FontProperties

font_path = "msyh.ttc"
font_prop = FontProperties(fname=font_path)


batch_size = 512
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = MnistNet()
net = net.to(device)
train_txtpath = r"D:\PythonProject\pythonProject2\MNIST_pytorch\data\MNIST\rawtrain.txt"
test_txtpath = r"D:\PythonProject\pythonProject2\MNIST_pytorch\data\MNIST\rawtest.txt"
transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize((0.1307,), (0.3081,))
                                ])

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    predictions = []
    ground_truth = []

    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.max(1, keepdim=True)[1]
            correct += pred.eq(target.view_as(pred)).sum().item()

            # 存储预测值和真实值,用于可视化
            predictions.extend(pred.cpu().numpy())
            ground_truth.extend(target.cpu().numpy())

    test_loss /= len(test_loader.dataset)
    acc = correct / len(test_loader.dataset) * 100.
    print('\n验证集: 平均损失: {:.4f}, 准确率: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct,
        len(test_loader.dataset), acc))

    # 可视化来自验证集的一些随机样本
    num_samples = 5
    sample_indices = np.random.choice(len(test_loader.dataset), num_samples, replace=False)

    plt.figure(figsize=(12, 5))

    for i, idx in enumerate(sample_indices):
        data, target = test_loader.dataset[idx]
        data = data.to(device).unsqueeze(0)  # 添加额外的维度,因为模型期望一个批次
        output = model(data)
        predicted_label = output.argmax(dim=1).item()

        plt.subplot(1, num_samples, i + 1)
        plt.imshow(data.cpu().numpy().squeeze(), cmap='gray')
        plt.title(f'预测: {predicted_label}\n实际: {target.item()}',fontproperties=font_prop)
        plt.axis('off')

    plt.show()

    from sklearn.metrics import confusion_matrix
    import seaborn as sns

    cm = confusion_matrix(ground_truth, predictions)
    plt.figure(figsize=(10, 8))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=range(10), yticklabels=range(10))
    plt.xlabel('预测', fontproperties=font_prop)
    plt.ylabel('实际', fontproperties=font_prop)
    plt.title('混淆矩阵', fontproperties=font_prop)
    plt.show()

if __name__ == "__main__":
    model_weights_path = "logs/model_weights.pth"
    if os.path.exists(model_weights_path):
        net.load_state_dict(torch.load(model_weights_path))
        print(f'Model weights loaded from {model_weights_path}')
    else:
        print(f'No model weights found at {model_weights_path}. Please make sure to save the weights before testing.')
    train_loader, test_loader = MINISTDataloader(train_txtpath, test_txtpath, transform, batch_size)
    test(net, device, test_loader)
  • 测试阶段,在测试数据集上评估训练好的模型。计算平均损失和准确性。期间,将模型设置为评估
  • 模式(model.eval())来禁用dropout层和批量归一化。最后保存模型权重到指定的文件夹当中。

三、结果分析

训练集样本数量为6万,测试集样本数量为1万,批次为512,训练轮次为20,对数据进行张量,归一化处理。

训练和测试结果如下所示:

1 训练及测试阶段损失变化

 

2 验证集正确率

# plot.py


import matplotlib.pyplot as plt

train_losses = [0.260449, 0.077057, 0.083472, 0.044373, 0.031067, 0.035871,
                0.009805, 0.010832, 0.006299, 0.006840, 0.001358, 0.003195,
                0.005098, 0.002992, 0.002009, 0.000739, 0.006418, 0.002669,
                0.000109, 0.000568]  # 填入训练过程中的损失值列表
valid_losses = [0.0920, 0.0563, 0.0440, 0.0339, 0.0362, 0.0352, 0.0341, 0.0335,
                0.0347, 0.0301, 0.0330, 0.0370, 0.0354, 0.0365, 0.0298, 0.0328,
                0.0388, 0.0410, 0.0337, 0.0382]  # 填入验证集的损失值列表
valid_accuracies = [9715/10000, 9812/10000, 9858/10000, 9896/10000, 9880/10000,
                    9892/10000, 9889/10000, 9894/10000, 9896/10000, 9914/10000,
                    9907/10000, 9892/10000, 9904/10000, 9894/10000, 9915/10000,
                    9913/10000, 9897/10000, 9902/10000, 9915/10000, 9905/10000]  # 填入验证集的准确率列表

epochs = range(1, len(train_losses) + 1)

# 损失值曲线
plt.figure(figsize=(10, 5))
plt.plot(epochs, train_losses, 'b', label='Training Loss')
plt.plot(epochs, valid_losses, 'r', label='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()

# 准确率曲线
plt.figure(figsize=(10, 5))
plt.plot(epochs, valid_accuracies, 'g')
plt.title('Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.show()

这里的train_loss,vaild_loss,vaild_accuracies均来自于训练过程。 

由图1图2可知,损失下降很快,正确率很快就上升了,这可能与数据集比较简单有关。

3 加载模型权重验证

这里随机选择了五张图片进行测试,五张均正确分类,说明我设计的模型在这个小样本上表现很好。

4 混淆矩阵

由图4混淆矩阵对角线上的值都比其他地方大时,说明我的模型在训练数据集上表现良好,能够正确地预测大多数样本的类别。对角线上的元素表示模型在相应类别上的正确分类数量。高的 TP 值表示模型成功地识别了这些类别的样本。

四、结论

本次设计了一个深度神经网络,包括两个卷积层和两个全连接层,以及适当的激活函数和池化层。该结构能够有效地提取手写字符图像的特征,并通过Log Softmax函数将输出转换为概率分布。在训练集上,模型在20个轮次内取得了显著的损失下降,并在验证集上达到了高准确率。测试集结果表明,模型在未见过的数据上也能够良好地泛化,对手写字符进行准确的识别。通过加载保存的模型权重进行验证,我们成功地对随机选择的五张手写字符图像进行了测试,所有测试样本均被正确分类。这表明我们的模型在实际应用中表现良好。在分析混淆矩阵时,发现对角线上的值比其他地方大,说明模型在训练数据集上表现良好,能够正确地预测大多数样本的类别。

手写字符识别模型在设计和实现中取得了令人满意的成果,展现了深度学习和神经网络技术在图像识别领域的应用潜力。 

五、项目目录结构

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/278973.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

在 Golang 应用程序中管理多个数据库

掌握在 Golang 项目中处理多个数据库的艺术 在当前软件开发领域中,处理单个应用程序内的多个数据库的需求越来越普遍。具有强大功能的 Golang 是处理此类任务的绝佳解决方案,无论您是与多个数据源合作还是仅为增强组织和可扩展性而分隔数据。在本文中&a…

网络安全应急响应工具之-流量安全取证NetworkMiner

在前面的一些文章中,用了很多的章节介绍流量分析和捕获工具wireshark。Wireshark是一款通用的网络协议分析工具,非常强大,关于wireshark的更多介绍,请关注专栏,wireshark从入门到精通。本文将介绍一个专注于网络流量取…

JavaEE - 网络编程之回显服务器

目录 一.什么是回显服务器? 二.UDP是什么? 1.TCP 是有链接的, UDP 是无连接的 2.TCP是可靠传输的,UDP是不可靠传输的 3.TCP是面向字节流的,UDP是面向数据报 4.TCP和UDP是全双工的 三.UDP的 socket api 四. 具体代码实现 …

NModbus-一个C#的Modbus协议库实现

NModbus-一个基于C#实现的Modbus通信协议库 最近在学习C#的时候,因为之前做过环保设备时使用C做过环保设备采集使用到了Modbus协议,当时看了一下基于C语言开发的libmodbus库。所以特意搜索看了一下C#下有什么Modbus协议库,在Github上面找了一…

Spring Boot学习随笔- 集成MyBatis-Plus,第一个MP程序(环境搭建、@TableName、@TableId、@TableField示例)

学习视频:【编程不良人】Mybatis-Plus整合SpringBoot实战教程,提高的你开发效率,后端人员必备! 引言 MyBatis-Plus是一个基于MyBatis的增强工具,旨在简化开发,提高效率。它扩展了MyBatis的功能,提供了许多实用的特性,…

数据缓存(Redis, Spring Cache)——后端

场景:给用户端展示的数据都是通过查询数据库所得,因此数据库访问压力会随着用户访问量增大而增加,从而导致系统响应慢、用户体验差。 方法:通过Redis缓存数据,减少查询数据库操作。(Redis的数据是存储在内存…

vue中常见的指令

简单介绍一下常见的vue中用到的指令 v-on 指定当前的事件&#xff0c;语法糖为&#xff0c;如例子所示&#xff0c;指定按钮的事件为addCounter&#xff0c;点击会使变量counter 1 <!DOCTYPE html> <html><head><meta charset"utf-8" />…

【教学类-43-02】20231226 九宫格数独2.0(n=9)(ChatGPT AI对话大师生成 回溯算法)

作品展示&#xff1a; 背景需求&#xff1a; 大4班20号说&#xff1a;我不会做这种&#xff08;九宫格&#xff09;&#xff0c;我做的是小格子的&#xff0c; 他把手工纸翻过来&#xff0c;在反面自己画了矩阵格子。向我展示&#xff1a; “我会做这种&#xff01;” 原来他…

Android MVP 写法

前言 Model&#xff1a;负责数据逻辑 View&#xff1a;负责视图逻辑 Presenter&#xff1a;负责业务逻辑 持有关系&#xff1a; 1、View 持有 Presenter 2、Model 持有 Presenter 3、Presenter 持有 View 4、Presenter 持有 Model 辅助工具&#xff1a;ViewBinding 执行…

C++:模板进阶

C:模板进阶 前言一、非类型模板参数二、模板的特化2.1 概念2.2 类模板特化2.2.1 全特化2.2 偏特化 2.3 函数模板特化 四、模板分离编译4.1 什么是分离编译4.2 模板的分离编译4.3 解决方法 五、总结 前言 在C:模板初阶中&#xff0c;已经介绍过了模板的基本用法&#xff0c;接下…

三角形的外心、内心、中心、重心、垂心、中心、费马点

三角形的外心 即三角形的外接圆的中心。此时&#xff1a; A O B O C O AO BO CO AOBOCO 需要注意的有以下几点&#xff1a; 第一&#xff0c; A O D &#xff0c; B O E &#xff0c; C O F 不一定是直线&#xff0c;能否证明&#xff1f; \color{red}AOD&#xff0c;BOE…

2023总结与展望--Empirefree

今年一篇博客都没写过了&#xff0c;好像完全在忙在工作和生活上面了&#xff0c;珍惜自我&#xff0c;保持热情&#xff0c;2024对我好点 文章目录 &#x1f525;1. 年终总结1.1.学习工作计划1.2. 生活计划1.3 个人总结 &#x1f525;2. 未来展望 &#x1f525;1. 年终总结 1…

数据库一般会采取什么样的优化方法?

数据库一般会采取什么样的优化方法&#xff1f; 1、选取适合的字段属性 为了获取更好的性能&#xff0c;可以将表中的字段宽度设得尽可能小。 尽量把字段设置成not null 执行查询的时候&#xff0c;数据库不用去比较null值。 对某些省份或者性别字段&#xff0c;将他们定义为e…

Linux - 设置虚拟机和主机IP在同一网段(桥接)

1.查看主机ip地址等相关信息。 ipconfig -all 2.设置虚拟网络编辑器 打开虚拟网络编辑器 设置虚拟网络编辑器&#xff0c;设置为桥接模式。&#xff08;记得以管理员方式打开VMware&#xff09;。 3.修改虚拟机网卡文件 查看虚拟机ip,我们的目标是将其修改为与主机同一网段…

如何在MAC OS中的XCODE下添加 <bits/stdc++.h>

mac上使用的编译器是Clang&#xff0c;但是没有万能头文件bits/stdc.h\&#xff0c;本文介绍如何添加万能头文件 Xcode 版本&#xff1a;15.1 - 打开应用程序-Xcode-右键显示包内容 Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/includ…

Android—— MIPI屏调试

一、实现步骤 1、在kernel/arch/arm/boot/dts/lcd-box.dtsi文件中打开&dsi0节点&#xff0c;关闭其他显示面板接口&#xff08;&edp_panel、&lvds_panel&#xff09; --- a/kernel/arch/arm/boot/dts/lcd-box.dtsib/kernel/arch/arm/boot/dts/lcd-box.dtsi-5,14 …

Halcon区域生长的几种算法regiongrowing/regiongrowing_mean/watersheds

Halcon区域生长的几种算法 文章目录 Halcon区域生长的几种算法1. regiongrowing 算子2. regiongrowing_mean算子3. 分水岭算法 如果想要获得具有相似灰度的相连区域&#xff0c;可以使用区域生长法寻找相邻的符合条件的像素。区域生长法的基本思想是&#xff0c;在图像上选定一…

22 UVM Callbacks

回调用于改变组件或对象的行为而不修改其代码。请参阅SystemVerilog callback - VLSI Verify以更好地理解。UVM 中的phasing机制就是回调的一个简单示例。 1 UVM Callback Usage 允许即插即用机制以建立可重用的验证环境。基于钩子方法&#xff08;hook method&#xff09;调…

2023-12-29 服务器开发-centos-安装php8

摘要: 2023-12-29 服务器开发-centos-安装php8 centos-安装php8 必备条件 Minimal CentOS 8 / RHEL 8User with sudo rightsInternet Connection (1) 更新系统 更新系统 $ sudo dnf update $ sudo dnf upgrade 重启系统 $ sudo reboot (2) 启用 EPEL & Remi 软件库…

golang 图片加水印,字体文件从哪里找

鼠标左键双击此电脑图标在此电脑文本框输入电脑默认字体地址&#xff1a;C:\Windows\Fonts找到需要用到的字体文件&#xff0c;复制到指定文件夹