【四】【C语言\动态规划】地下城游戏、按摩师、打家劫舍 II,三道题目深度解析

动态规划

动态规划就像是解决问题的一种策略,它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题,并将每个小问题的解保存起来。这样,当我们需要解决原始问题的时候,我们就可以直接利用已经计算好的小问题的解,而不需要重复计算。

动态规划与数学归纳法思想上十分相似。

数学归纳法:

  1. 基础步骤(base case):首先证明命题在最小的基础情况下成立。通常这是一个较简单的情况,可以直接验证命题是否成立。

  2. 归纳步骤(inductive step):假设命题在某个情况下成立,然后证明在下一个情况下也成立。这个证明可以通过推理推断出结论或使用一些已知的规律来得到。

通过反复迭代归纳步骤,我们可以推导出命题在所有情况下成立的结论。

动态规划:

  1. 状态表示:

  2. 状态转移方程:

  3. 初始化:

  4. 填表顺序:

  5. 返回值:

数学归纳法的基础步骤相当于动态规划中初始化步骤。

数学归纳法的归纳步骤相当于动态规划中推导状态转移方程。

动态规划的思想和数学归纳法思想类似。

在动态规划中,首先得到状态在最小的基础情况下的值,然后通过状态转移方程,得到下一个状态的值,反复迭代,最终得到我们期望的状态下的值。

接下来我们通过三道例题,深入理解动态规划思想,以及实现动态规划的具体步骤。

174. 地下城游戏

题目解析

状态表示

我们可以定义,dp[i][j]表示从(i,j)位置出发,到达右下角所需的最小生命值。

状态的表示通常是经验+题目来得到的。

经验指的是,以某个位置为结尾,或者以某个位置开始。

这道题目我们选择以(i,j)位置开始到达最后的思路定义状态。

故状态表示为,dp[i][j]表示从(i,j)位置出发,到达右下角所需的最小生命值。

为什么选择这一种方式而不选择从(0,0)位置开始到达(i,j)位置所需的最小生命值?

上图所示,如果我们考虑蓝色和绿色两种路径,

绿色路径「从出发点到当前点的路径和」为 1,「从出发点到当前点所需的最小初始值」为 3。

蓝色路径「从出发点到当前点的路径和」为 −1,「从出发点到当前点所需的最小初始值」为 2。

我们希望「从出发点到当前点的路径和」尽可能大,而「从出发点到当前点所需的最小初始值」尽可能小。这两条路径各有优劣。

在上图中,我们知道应该选取绿色路径,因为蓝色路径的路径和太小,使得蓝色路径需要增大初始值到 4 才能走到终点,而绿色路径只要 3 点初始值就可以直接走到终点。但是如果把终点的 −2 换为 0,蓝色路径只需要初始值 2,绿色路径仍然需要初始值 3,最优决策就变成蓝色路径了。

因此,如果按照从左上往右下的顺序进行动态规划,我们无法直接确定到达 (1,2) 的方案,因为有两个重要程度相同的参数同时影响后续的决策。也就是说,这样的动态规划是不满足「无后效性」的。

于是我们考虑从右下往左上进行动态规划。令 dp[i][j] 表示从坐标 (i,j) 到终点所需的最小初始值。换句话说,当我们到达坐标 (i,j)时,如果此时我们的路径和不小于 dp[i][j],我们就能到达终点。

这是leetcode官方题解中的部分解析。

我们可以得出,如果用以某位置为结尾思路定义状态表示,我们没办法依靠前面的状态准确推导出(i,j)位置的状态,而后续的数据依旧会影响(i,j)位置的状态值,所以这种方式是错误的。在运用动态规划时,必须满足【无后效性】,所以我们选择以某位置开始思路定义状态表示。

当我们选择 以某位置开始思路定义状态表示时,我们前面的状态值并不会影响后面的状态值,可以保证满足【无后效性】,所以这种方式是可以行的。

故状态表示为,dp[i][j]表示从(i,j)位置出发,到达右下角所需的最小生命值。

状态转移方程

我们考虑,(i,j)位置的值能不能由其他的状态值推导得出,dp[i+1][j]表示从(i+1,j)位置出发,到达右下角所需的最小生命值。dp[i][j+1]表示从(i,j+1)位置出发,到达右下角所需的最小生命值。对于(i,j)的状态值,分两种情况,(i,j)房间内的值是正数或者是负数。如果(i,j)房间的值是负数,说明我们到达(i,j)时的最小生命值应该是min(dp[i][j+1],dp[i+1][j])-dungeon[i][j]。如果(i,j)房间的值是正数,说明我们到达(i,j)时的最小生命值应该是min(dp[i][j+1],dp[i+1][j])-dungeon[i][j],但是这样写又会有两种情况,那就是减出来的数是大于零的数或者是小于等于零的数,我们到达(i,j)房间时最小生命不可能是小于等于零的数,而减出来的数是小于等于零意义是,(i,j)的血包特别的大,即使你的血是负数,吃完之后都可以到达终点,所以实际上到达该位置的生命值为最低的1就可以。

故状态转移方程为,

dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j]

if(dp[i][j]<=0)dp[i][j]=1

初始化

根据状态转移方程,我们如果要推导出(i,j)位置的状态,就需要运用到(i+1,j)和(i,j+1)位置的状态,所以我们为了不越界,需要初始化最后一行和最后一列的数据。我们发现这种初始化有点复杂,所以我们把对这些位置的初始化转化为对虚拟节点的初始化,也就是创建虚拟节点代替原先初始化的位置。

对于红色位置的状态,他们所需访问的虚拟节点的值,是一定不能取到的,根据状态转移方程,

dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j]

if(dp[i][j]<=0)dp[i][j]=1

所以他们访问的虚拟节点值应该置正无穷,这样取最小就不会取到。

对于紫色位置的状态,他的状态值应该是1-dungeon[i][j]所以min(dp[i+1][j],dp[i][j+1])的值应该为1。所有我们可以先把所有位置置正无穷,然后在这两个位置选一个位置置1就可以了。

填表顺序

从右到左,从下到上

返回值

返回dp[0][0]

代码实现

 
int calculateMinimumHP(int** dungeon, int dungeonSize, int* dungeonColSize) {
    int row=dungeonSize;
    int col=dungeonColSize[0];

    int dp[row+1][col+1];

    for(int i=0;i<=row;i++){
        memset(dp[i],0x3f,sizeof(dp[i]));
    }
    dp[row-1][col]=1;
    

    for(int i=row-1;i>=0;i--){
        for(int j=col-1;j>=0;j--){
            dp[i][j]=fmin(dp[i][j+1],dp[i+1][j])-dungeon[i][j];
            if(dp[i][j]<=0) dp[i][j]=1;
        }
    }

    return dp[0][0];
}
 
    for(int i=0;i<=row;i++){
        memset(dp[i],0x3f,sizeof(dp[i]));
    }

void *memset(void *s, int ch, size_t n);

函数解释:将s中前n个字节 (typedef unsigned int size_t )用 ch 替换并返回 s 。

memset:作用是在一段内存块中填充某个给定的值,它是对较大的结构体数组进行清零操作的一种最快方法。

_itoa可以把x值转化为char类型的2进制数存放在string中。

我们发现x的二进制数是00111111 00111111 00111111 00111111。

用_itoa转换二进制数时,前导零省略了,实际上是00111111 00111111 00111111 00111111。

一个int类型占4个字节。

一个字节占8位二进制数。

而0x3f的二进制数是00111111。

memset的意思是,将x中前n个字节,用0x3f最后一个字节对应的二进制数替换。

那为什么要赋值0x3f:

作为无穷大使用

因为4个字节均为0x3f时,0x3f3f3f3f的十进制是1061109567,也就是10^ 9级别的(和0x7fffffff一个数量级),而一般场合下的数据都是小于10^9的,所以它可以作为无穷大使用而不致出现数据大于无穷大的情形。

可以保证无穷大加无穷大仍然不会超限。

另一方面,由于一般的数据都不会大于10^9,所以当我们把无穷大加上一个数据时,它并不会溢出(这就满足了“无穷大加一个有穷的数依然是无穷大”),事实上0x3f3f3f3f+0x3f3f3f3f=2122219134,这非常大但却没有超过32-bit int的表示范围,所以0x3f3f3f3f还满足了我们“无穷大加无穷大还是无穷大”的需求。

面试题 17.16. 按摩师

题目解析

状态表示

我们可以定义dp[i]表示,从nums[0]开始一直到nums[i],选择不相邻的预约情况中,最长的时间数。

状态转移方程

我们想一想dp[i]能不能由其他的状态推导得出。

dp[i]表示,从nums[0]开始一直到nums[i],选择不相邻的预约情况中,最长的时间数。

dp[i-1]表示,从nums[0]开始一直到nums[i-1],选择不相邻的预约情况中,最长的时间数。

dp[i-2]表示,从nums[0]开始一直到nums[i-2],选择不相邻的预约情况中,最长的时间数。

如果i位置预约我们选择,那么i-1位置预约肯定不选择,这种情况对应的最长时间数就是

dp[i-2]+nums[i]

如果i位置预约我们不选择,这种情况对应的最长时间数就是

dp[i-1]

因为我们存储是最长时间数,所以需要从两种情况中选一个时间更长的。

故状态转移方程为,dp[i]=max(dp[i-2]+nums[i],dp[i-1])

初始化

根据状态转移方程,我们推导出i位置的状态需要用到(i-2)和(i-1)的状态值。

我们想要统一所有需要得到的状态,都通过状态转移方程推导得出,那么我们就需要创建虚拟节点替代需要初始化的位置。

创建虚拟节点有几点注意事项,

第一,对虚拟节点的初始化必须保证后续的推导过程不出错。

第二,注意下标映射关系的变化,也就是状态表示和状态转移方程的下标变换。

状态转移方程为,dp[i]=max(dp[i-2]+nums[i-2],dp[i-1])。

对于紫色第一个状态值,应该是填自己的时间数,所以需要选择dp[i-2]+nums[i-2]且dp[n-2]需要为零,即dp[0]为0。

对于紫色第二个状态值,要么是填自己的值,要么填紫色第一个状态值。

所以dp[i-2]为零,即dp[1]。

故初始化为dp[0]=dp[1]=0。

填表顺序

从左往右

返回值

放回最后一个元素的值,dp[n+1]

n是nums的数组大小

代码实现

 

int massage(int* nums, int numsSize){
    int n=numsSize;
    int dp[n+2];
    memset(dp,0,sizeof(dp));

    for(int i=2;i<=n+1;i++){
        dp[i]=fmax(dp[i-2]+nums[i-2],dp[i-1]);
    }
    return dp[n+1];
}

213. 打家劫舍 II

题目解析

我们可以把问题分成两种情况,要么数组的长度大于1,要么数组的长度等于1。

当数组的长度大于1时,我们有两种情况。

第一,我们考虑第一个房子,不考虑最后一个房子。

第二,我们不考虑第一个房子,考虑最后一个房子。

这样问题就转化为普通的不环绕的问题了。

当数组的长度等于1时,我们只能选择nums[0],这一个房子。

所以我们只需要解决不环绕的问题即可。

状态表示

我们可以定义dp[i]表示从nums[0]开始到nums[i]这些房子,选择不相邻房子方法数中金额最大的金额数。

状态转移方程

我们想一想dp[i]能不能由其他状态推导得出。

dp[i]表示从nums[0]开始到nums[i]这些房子,选择不相邻房子方法数中金额最大的金额数。

dp[i-1]表示从nums[0]开始到nums[i-1]这些房子,选择不相邻房子方法数中金额最大的金额数。

dp[i-2]表示从nums[0]开始到nums[i-2]这些房子,选择不相邻房子方法数中金额最大的金额数。

对dp[i]这个状态进行分析,如果该房子选择的话,i-1房子就不能选择,所以这种情况下金额最大数为dp[i-2]+nums[i]

如果该房子不选择的话,最大金额数就是dp[i-1]

故状态转移方程为,dp[i]=max(dp[i-2]+nums[i],dp[i-1])

初始化

根据状态转移方程,我们推导出i位置的状态需要用到(i-2)和(i-1)的状态值。

我们想要统一所有需要得到的状态,都通过状态转移方程推导得出,那么我们就需要创建虚拟节点替代需要初始化的位置。

创建虚拟节点有几点注意事项,

第一,对虚拟节点的初始化必须保证后续的推导过程不出错。

第二,注意下标映射关系的变化,也就是状态表示和状态转移方程的下标变换。

状态转移方程为,dp[i]=max(dp[i-2]+nums[i-2],dp[i-1])。

对于紫色第一个状态值,应该是填自己的时间数,所以需要选择dp[i-2]+nums[i-2]且dp[n-2]需要为零,即dp[0]为0。

对于紫色第二个状态值,要么是填自己的值,要么填紫色第一个状态值。

所以dp[i-2]为零,即dp[1]。

故初始化为dp[0]=dp[1]=0。

填表顺序

从左往右

返回值

分两种情况,计算当长度大于1时,考虑第一个房子而不考虑最后一个房子的金额数,

和当长度大于1时,不考虑第一个房子而考虑最后一个房子的金额数。

和当长度为1时,nums[0]的金额数

返回三者中最大的金额数即可。

代码实现

 
int rob_(int* nums,int numsSize, int left,int right) {
    int n=numsSize;
    int dp[n+2];
    memset(dp,0,sizeof(dp));

    for(int i=left;i<=right;i++){
        dp[i]=fmax(dp[i-2]+nums[i-2],dp[i-1]);
    }
    return dp[right];
}
int rob(int* nums,int numsSize){
    int num1=rob_(nums,numsSize,2,numsSize);
    int num2=rob_(nums,numsSize,3,numsSize+1);
    return fmax(fmax(num1,num2),nums[0]);
}

我们rob_函数就是解决不环绕的一列房子问题。

接着把环绕的问题转化为不环绕的问题。

如果数组的长度大于1。

如果我们考虑第一个房子,而不考虑最后一个房子,只需要填写dp表中下标2到下标numsSize状态的推导填写。

如果我们不考虑第一个房子,而考虑最后一个房子,只需要填写dp表中下标3到下标numsSize+1的状态的推导填写。

如果数组的长度等于1。

考虑nums[0]的金额数。

如果数组长度为1,num1和num2计算出来的值都是零,因为numsSize 为1,而循环是从下标2开始或者从下标3开始,所以最后的返回值是初始化的零。

此时只需要返回nums[0]即可,nums [0]一定大于0。

所以返回比较num1,num2和nums[0]即可。

结尾

今天我们学习了动态规划的思想,动态规划思想和数学归纳法思想有一些类似,动态规划在模拟数学归纳法的过程,已知一个最简单的基础解,通过得到前项与后项的推导关系,由这个最简单的基础解,我们可以一步一步推导出我们希望得到的那个解,把我们得到的解依次存放在dp数组中,dp数组中对应的状态,就像是数列里面的每一项。最后感谢您阅读我的文章,对于动态规划系列,我会一直更新,如果您觉得内容有帮助,可以点赞加关注,以快速阅读最新文章。

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/266603.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

快速安装方式安装开源OpenSIPS和CP控制界面

OpenSIPS是目前世界上主流的两个SIP软交换引擎(其中另外一个是kamailio)或者SIP信令服务器&#xff08;个人认为是比较正确的称谓&#xff09;。关于Opensips的基础和一些参数配置和安装方式笔者在很久以前的历史文档中有非常多的介绍。最近&#xff0c;很多用户使用OpenSIPS软…

洛谷 NOIP2016 普及组 回文日期 + 洛谷 NOIP2017 图书管理员

回文日期这题目本来是不难想思路的。。。。。。 然而我第一次做的时候改了蛮久才把代码完全改对&#xff0c;主要感觉还是不够细心&#xff0c;敲的时候也没注意见检查一些小错误&#xff0c;那么接下来不说废话&#xff0c;请看题干&#xff1a; 接下来请看输入输出的样例以及…

【机器学习】模式识别

1 概述 模式识别&#xff0c;简单来讲&#xff0c;就是分类问题。 模式识别应用&#xff1a;医学影像分析、人脸识别、车牌识别、遥感图像 2 模式分类器 分类器的分类&#xff1a;线性分类器、非线性分类器、最近邻分类器 2.1 分类器的训练&#xff08;学习&#xff09;过…

Stable Diffusion系列(三):网络分类与选择

文章目录 网络分类模型基座模型衍生模型二次元模型2.5D模型写实风格模型 名称解读 VAELora嵌入文件放置界面使用 网络分类 当使用SD webui绘图时&#xff0c;为了提升绘图质量&#xff0c;可以多种网络混合使用&#xff0c;可选的网络包括了模型、VAE、超网络、Lora和嵌入。 …

使用minio实现大文件断点续传

部署 minio 拉取镜像 docker pull minio/minio docker images新建映射目录 新建下面图片里的俩个目录 data(存放对象-实际的数据) config 存放配置开放对应端口 我使用的是腾讯服务器所以 在腾讯的安全页面开启 9000&#xff0c;9090 两个端口就可以了&#xff08;根据大家实际…

数据权限篇

文章目录 1. 如何实现数据权限&#xff08;内核&#xff09;1.1 原理1.2 源码实现&#xff0c;mybatis如何重写sql1.2.1 重写sql1.2.2 解析sql1.2.3 DataPermissionDatabaseInterceptor 1. 如何实现数据权限&#xff08;内核&#xff09; 1.1 原理 面对复杂多变的需求&#xf…

二叉树进阶题目(超详解)

文章目录 前言根据二叉树创建字符串题目分析写代码 二叉树的层序遍历题目分析 写代码二叉树的层序遍历II题目分析写代码 二叉树的最近公共祖先题目分析写代码时间复杂度 优化思路优化的代码 二叉搜索树与双向链表题目分析写代码 从前序与中序遍历序列构造二叉树题目分析写代码从…

python实现bp神经网络对csv文件进行数据预测

参考资源&#xff1a; sklearn库 bp神经网络[从原理到代码一篇搞定]&#xff08;2&#xff09;_sklearn 神经网络-CSDN博客 十分钟上手sklearn&#xff1a;安装&#xff0c;获取数据&#xff0c;数据预处理 - 知乎 (zhihu.com) 一个实例讲解如何使用BP神经网络(附代码) - 知…

VSCode软件与SCL编程

原创 NingChao NCLib 博途工控人平时在哪里技术交流博途工控人社群 VSCode简称VSC&#xff0c;是Visual studio code的缩写&#xff0c;是由微软开发的跨平台的轻量级编辑器&#xff0c;支持几乎所有主流的开发语言的语法高亮、代码智能补全、插件扩展、代码对比等&#xff0c…

【Python】贪心算法入门

一.引言 本文将通过两个问题和两道例题带你入门贪心算法。 贪心算法&#xff08;Greedy Algorithm&#xff09;是一种在每一步选择中都采取在当前状态下最优&#xff08;最好或最有利&#xff09;的选择&#xff0c;从而希望导致全局最优解的算法。贪心算法不保证找到全局最优…

STM32——CAN协议

文章目录 一.CAN协议的基本特点1.1 特点1.2 电平标准1.3 基本的五个帧1.4 数据帧 二.数据帧解析2.1 帧起始和仲裁段2.2 控制段2.3 数据段和CRC段2.4 ACK段和帧结束 三.总线仲裁四.位时序五.STM32CAN控制器原理与配置5.1 STM32CAN控制器介绍5.2 CAN的模式5.3 CAN框图 六 手册寄存…

w15初识php基础

一、计算100之内的偶数之和 实现思路 所有的偶数除2都为0 代码实现 <?php # 记录100以内的偶数和 $number1; $num0; while($number<100){if($number%20){ $num$number;}$number1; } echo $num; ?>输出的结果 二、计算100之内的奇数之和 实现思路 所有的奇数除…

JavaScript常用技巧专题四

文章目录 一、使用箭头函数简化函数定义二、使用解构赋值简化变量声明三、使用模板字面量进行字符串拼接四、使用展开运算符进行数组和对象操作五、使用数组的高阶方法简化循环和数据操作六、使用条件运算符简化条件判断七、使用对象解构和默认参数简化函数参数八、使用函数式编…

7. 行为模式 - 状态模式

亦称&#xff1a; State 意图 状态模式是一种行为设计模式&#xff0c; 让你能在一个对象的内部状态变化时改变其行为&#xff0c; 使其看上去就像改变了自身所属的类一样。 问题 状态模式与有限状态机 的概念紧密相关。 有限状态机。 其主要思想是程序在任意时刻仅可处于几…

《PySpark大数据分析实战》-18.什么是数据分析

&#x1f4cb; 博主简介 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是wux_labs。&#x1f61c; 热衷于各种主流技术&#xff0c;热爱数据科学、机器学习、云计算、人工智能。 通过了TiDB数据库专员&#xff08;PCTA&#xff09;、TiDB数据库专家&#xff08;PCTP…

Confluent 与阿里云将携手拓展亚太市场,提供消息流平台服务

10 月 31 日&#xff0c;杭州云栖大会上&#xff0c;阿里云云原生应用平台负责人丁宇宣布&#xff0c;Confluent 成为阿里云技术合作伙伴&#xff0c;合作全新升级&#xff0c;一起拓展和服务亚太市场。 本次合作伙伴签约&#xff0c;阿里云与消息流开创领导者 Confluent 将进一…

掌握函数式组件:迈向现代化前端开发的关键步骤(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

Linux创建macvlan 测试bridge、private和vepa模式

Linux创建macvlan&#xff0c;测试bridge、private和vepa模式 最近在看Docker的网络&#xff0c;看到关于macvlan网络的介绍。查阅了相关资料&#xff0c;记录如下。 参考 1.Linux Macvlan 2.图解几个与Linux网络虚拟化相关的虚拟网卡-VETH/MACVLAN/MACVTAP/IPVLAN 环境 操…

Python遥感影像深度学习指南(1)-使用卷积神经网络(CNN、U-Net)和 FastAI进行简单云层检测

【遥感影像深度学习】系列的第一章,Python遥感影像深度学习的入门课程,介绍如何使用卷积神经网络(CNN)从卫星图像中分割云层 1、数据集 在本项目中,我们将使用 Kaggle 提供的 38-Cloud Segmentation in Satellite Images数据集。 该数据集由裁剪成 384x384 (适用…

十八、本地配置Hive

1、配置MYSQL mysql> alter user rootlocalhost identified by Yang3135989009; Query OK, 0 rows affected (0.00 sec)mysql> grant all on *.* to root%; Query OK, 0 rows affected (0.00 sec)mysql> flush privileges; Query OK, 0 rows affected (0.01 sec)2、…