python实现bp神经网络对csv文件进行数据预测

参考资源:

sklearn库 bp神经网络[从原理到代码一篇搞定](2)_sklearn 神经网络-CSDN博客

十分钟上手sklearn:安装,获取数据,数据预处理 - 知乎 (zhihu.com)

一个实例讲解如何使用BP神经网络(附代码) - 知乎 (zhihu.com)

神经网络——Python实现BP神经网络算法(理论+例子+程序)_bp神经网络python-CSDN博客

sklearn包MLPClassifier的使用详解+例子-CSDN博客

数据集按照csv格式标签划分为训练集和验证集(完整代码)_train.csv-CSDN博客

1.数据集长相(也可以管我要):

训练数据集(里面百分之70是训练集,百分之30为测试集,最后一列(AA列)为标签,AA列有数)

预测数据集(里面没有标签(AA列没数))

2.图像:

3.代码

import numpy as np
import pandas as pd
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import math

#获取数据转为numpy数组
filename=pd.read_csv("C:/Users/86170/Desktop/exel/testdata.csv")
filename1=pd.read_csv("C:/Users/86170/Desktop/exel/test.csv")
sheet1=np.array(filename)
sheet2=np.array(filename1)

#分成特征与标签
X=np.array(sheet1[1:10001,0:26])
Y=np.array(sheet1[1:10001,26:27])
new_X=np.array(sheet2[1:10001,0:26])
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=42)
# 创建BP神经网络分类器
mlp = MLPClassifier(hidden_layer_sizes=(100,100,50,), max_iter=1000, random_state=42)

# 训练模型
mlp.fit(X_train, y_train)
# 神经网络预测
y_pred = mlp.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("精确度为:", accuracy)
# 神经网络预测
error1 = y_pred - y_test
error=abs(error1)
#print(abs(error))

#预测值代码
#predict_y = np.zeros(10)
predict_y=mlp.predict(new_X)
predict_y1=np.transpose(predict_y)
#求误差
#平均绝对误差
matrix_sum=0
for row in error:
    matrix_sum+=sum(row)/10000
    #matrix_sum=abs(matrix_sum)
    print( "平均绝对误差为:",matrix_sum)
    break
#均方误差
mse1=error*error.T/10000
mse2=0
for row in mse1:
    mse2+=sum(row)
    #matrix_sum=abs(matrix_sum)
    print("均方误差为:",mse2)
    break
#均方根误差
mse3=math.sqrt(matrix_sum)
print("均方根误差为:",mse3)
#打印预测结果
print("前100个预测结果为:")
for i in range(1,100):
    print(predict_y1[i])
print(y_test.shape)
print(y_pred.shape)
# 真实值与预测值误差比较的绘图代码
#取3000个点太多
y_test1=np.array(y_test[1:101,:])
y_pred1=np.array(y_pred[1:101])
X = list(np.arange(-1, 1, 0.02))
plt.plot(X, y_test1)
plt.plot(X, y_pred1)
plt.xlabel("x")  # x轴标签
plt.ylabel("ylabel")  # y轴标签
plt.title("BP netural real and prediction")  # 图标题
plt.show()




4.得出的结果如下:

精确度为: 0.994
平均绝对误差为: 0.3054
均方误差为: 0.8411999999999878
均方根误差为: 0.552630075185924
前100个预测结果为:
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5.0
0.0
0.0
0.0
0.0
0.0
0.0
5.0
0.0
0.0
5.0
0.0
0.0
0.0
5.0
0.0
0.0
0.0
5.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5.0
0.0
0.0
0.0
0.0
0.0
0.0
5.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/266594.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VSCode软件与SCL编程

原创 NingChao NCLib 博途工控人平时在哪里技术交流博途工控人社群 VSCode简称VSC,是Visual studio code的缩写,是由微软开发的跨平台的轻量级编辑器,支持几乎所有主流的开发语言的语法高亮、代码智能补全、插件扩展、代码对比等&#xff0c…

【Python】贪心算法入门

一.引言 本文将通过两个问题和两道例题带你入门贪心算法。 贪心算法(Greedy Algorithm)是一种在每一步选择中都采取在当前状态下最优(最好或最有利)的选择,从而希望导致全局最优解的算法。贪心算法不保证找到全局最优…

STM32——CAN协议

文章目录 一.CAN协议的基本特点1.1 特点1.2 电平标准1.3 基本的五个帧1.4 数据帧 二.数据帧解析2.1 帧起始和仲裁段2.2 控制段2.3 数据段和CRC段2.4 ACK段和帧结束 三.总线仲裁四.位时序五.STM32CAN控制器原理与配置5.1 STM32CAN控制器介绍5.2 CAN的模式5.3 CAN框图 六 手册寄存…

w15初识php基础

一、计算100之内的偶数之和 实现思路 所有的偶数除2都为0 代码实现 <?php # 记录100以内的偶数和 $number1; $num0; while($number<100){if($number%20){ $num$number;}$number1; } echo $num; ?>输出的结果 二、计算100之内的奇数之和 实现思路 所有的奇数除…

JavaScript常用技巧专题四

文章目录 一、使用箭头函数简化函数定义二、使用解构赋值简化变量声明三、使用模板字面量进行字符串拼接四、使用展开运算符进行数组和对象操作五、使用数组的高阶方法简化循环和数据操作六、使用条件运算符简化条件判断七、使用对象解构和默认参数简化函数参数八、使用函数式编…

7. 行为模式 - 状态模式

亦称&#xff1a; State 意图 状态模式是一种行为设计模式&#xff0c; 让你能在一个对象的内部状态变化时改变其行为&#xff0c; 使其看上去就像改变了自身所属的类一样。 问题 状态模式与有限状态机 的概念紧密相关。 有限状态机。 其主要思想是程序在任意时刻仅可处于几…

《PySpark大数据分析实战》-18.什么是数据分析

&#x1f4cb; 博主简介 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是wux_labs。&#x1f61c; 热衷于各种主流技术&#xff0c;热爱数据科学、机器学习、云计算、人工智能。 通过了TiDB数据库专员&#xff08;PCTA&#xff09;、TiDB数据库专家&#xff08;PCTP…

Confluent 与阿里云将携手拓展亚太市场,提供消息流平台服务

10 月 31 日&#xff0c;杭州云栖大会上&#xff0c;阿里云云原生应用平台负责人丁宇宣布&#xff0c;Confluent 成为阿里云技术合作伙伴&#xff0c;合作全新升级&#xff0c;一起拓展和服务亚太市场。 本次合作伙伴签约&#xff0c;阿里云与消息流开创领导者 Confluent 将进一…

掌握函数式组件:迈向现代化前端开发的关键步骤(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

Linux创建macvlan 测试bridge、private和vepa模式

Linux创建macvlan&#xff0c;测试bridge、private和vepa模式 最近在看Docker的网络&#xff0c;看到关于macvlan网络的介绍。查阅了相关资料&#xff0c;记录如下。 参考 1.Linux Macvlan 2.图解几个与Linux网络虚拟化相关的虚拟网卡-VETH/MACVLAN/MACVTAP/IPVLAN 环境 操…

Python遥感影像深度学习指南(1)-使用卷积神经网络(CNN、U-Net)和 FastAI进行简单云层检测

【遥感影像深度学习】系列的第一章,Python遥感影像深度学习的入门课程,介绍如何使用卷积神经网络(CNN)从卫星图像中分割云层 1、数据集 在本项目中,我们将使用 Kaggle 提供的 38-Cloud Segmentation in Satellite Images数据集。 该数据集由裁剪成 384x384 (适用…

十八、本地配置Hive

1、配置MYSQL mysql> alter user rootlocalhost identified by Yang3135989009; Query OK, 0 rows affected (0.00 sec)mysql> grant all on *.* to root%; Query OK, 0 rows affected (0.00 sec)mysql> flush privileges; Query OK, 0 rows affected (0.01 sec)2、…

Web前端 ---- 【Vue】vue路由守卫(全局前置路由守卫、全局后置路由守卫、局部路由path守卫、局部路由component守卫)

目录 前言 全局前置路由守卫 全局后置路由守卫 局部路由守卫之path守卫 局部路由守卫之component守卫 前言 本文介绍Vue2最后的知识点&#xff0c;关于vue的路由守卫。也就是鉴权&#xff0c;不是所有的组件任何人都可以访问到的&#xff0c;需要权限&#xff0c;而根据权限…

深度学习 | 梯度下降算法及其变体

一、最优化与深度学习 1.1、训练误差与泛化误差 1.2、经验风险 1.3、优化中的挑战 1.3.1、局部最小值 1.3.2、 鞍点 经常是由于模型复杂度过高或者训练样本数据过少造成的 —— Overfitting 1.3.3、悬崖 1.3.4、长期依赖问题 二、损失函数 2.1、损失函数的起源 损失函数(loss…

【prompt一】Domain Adaptation via Prompt Learning

1.Motivation 当前的UDA方法通过对齐源和目标特征空间来学习域不变特征。这种对齐是由诸如统计差异最小化或对抗性训练等约束施加的。然而&#xff0c;这些约束可能导致语义特征结构的扭曲和类可辨别性的丧失。 在本文中&#xff0c;引入了一种新的UDA提示学习范式&#xff0…

蓝牙物联网在汽车领域的应用

I、蓝牙的技术特点 ​ 1998 年 5 月&#xff0c;瑞典爱立信、芬兰诺基亚、日本东芝、美国IBM 和英特尔公司五家著名厂商&#xff0c;在联合拓展短离线通信技术的标准化活动时提出了蓝牙技术的概念。蓝牙工作在无需许可的 2.4GHz 工业频段 (SIM)之上(我国的频段范围为2400.0~248…

计算机毕业设计 基于SpringBoot的房屋租赁管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

flutter 实战 之 dio小实践

我们要对dio进行封装 class HttpRequest {static Future request(String url,{String method "get",Map<String,dynamic>? params})async{// 创建dio实例BaseOptions baseOptions BaseOptions(baseUrl: base_url,connectTimeout: Duration(seconds: 1));fi…

STM32软硬件CRC测速对比

硬件CRC配置 以及软硬件CRC速度对比 使用CUBEMX配置默认使用的是CRC32&#xff0c;从库中可以看出这一点 HAL库提供了以下两个计算函数 HAL_CRC_Accumulate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength); 这个函数用于在已有的CRC校验结果的基础上累积…

LV.13 D6 Linux内核安装及交叉编译 学习笔记

一、tftp加载Linux内核及rootfs 1.1 uboot内核启动命令 bootm 启动指定内存地址上的Linux内核并为内核传递参数 bootm kernel-addr ramdisk-addr dtb-addr 注: kernel-addr: 内核的下载地址 ramdisk-addr: 根文件系统的下载地址 …