nn.LSTM个人记录

简介

 

nn.LSTM参数

torch.nn.lstm(input_size,   "输入的嵌入向量维度,例如每个单词用50维向量表示,input_size就是50"
              hidden_size,  "隐藏层节点数量,也是输出的嵌入向量维度"
              num_layers,   "lstm 隐层的层数,默认为1"
              bias,         "隐层是否带 bias,默认为 true"
              batch_first,  "True 或者 False,如果是 True,则 input 为(batchsize, len, input_size),默认值为:False(len, batchsize, input_size)"
              dropout,      "除最后一层,每一层的输出都进行dropout,默认值0"
              bidirectional "如果设置为 True, 则表示双向 LSTM,默认为 False"
              )

维度

batch_first=True,输入维度(batchsize,len,input_size)

batch_first=False,输入维度(len,batchsize, input_size)

batch_first=False,输出维度(len,batchsize,hidden_size)

举例嵌入向量维度为1

 假如输入x为(batchsize,len)的序列,即嵌入向量维度为1,进行一个回归预测。

如果将嵌入向量维度维度设为1就不太合理,因为如果len非常长例如几w,那么经过几w的时间步得到的得到的h维度为(batchsize,1),序列太长丢失很多信息,再输入全连接层预测效果不好。并且lstm实际上将嵌入向量维度从input_size规约到hidden_size。

所以在这里我们将len作为input_size,嵌入向量维度1作为len(即对调了一下)

添加一个维度:

x = x.unsqueeze(0)

x维度变为(1,batchsize,len),相当于设置数据的长度为1,嵌入向量维度为len,通过nn.LSTM输入到网络中。

#lstm为定义的网络
#h[-1]为最后输入到全连接层的嵌入矩阵 但是由于此问题中len为1,所以x等于h[-1]
x, (h, c) = lstm(x)

x维度变为(1,batchsize,hidden_size)

h为每层lstm最后一个时间步的输出一般可以输入到后续的全连接层),维度为(num_layers,batchsize,hidden_size)

c为最后一个时间步 LSTM cell 的状态(记忆单元,一般用不到),维度为(num_layers,batchsize,hidden_size)

移除张量中所有尺寸为 1 的维度,即将第一个维度移除掉:

lstm_out = x.squeeze(0)

x维度变为(batchsize,hidden_size) ,输入到全连接层(线性层,维度(hidden_size,num_class))中,最终输出维度(batchsize,num_class)

参考:

Pytorch — LSTM (nn.LSTM & nn.LSTMCell)-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/264765.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

R语言中使用ggplot2绘制散点图箱线图,附加显著性检验

散点图可以直观反映数据的分布,箱线图可以展示均值等关键统计量,二者结合能够清晰呈现数据蕴含的信息。 本篇笔记主要内容:介绍R语言中绘制箱线图和散点图的方法,以及二者结合展示教程,添加差异比较显著性分析&#xf…

[Angular] 笔记 6:ngStyle

ngStyle 指令: 用于更新 HTML 元素的样式。设置一个或多个样式属性&#xff0c;用以冒号分隔的键值对指定。键是样式名称&#xff0c;带有可选的 .<unit> 后缀&#xff08;如 ‘top.px’、‘font-style.em’&#xff09;&#xff0c;值为待求值的表达式&#xff0c;得到…

KingbaseV8R6单实例定时全量备份步骤

此场景为单机数据库节点内部备份&#xff0c;方便部署和操作&#xff0c;但备份REPO与数据库实例处于同一个物理主机&#xff0c;冗余度较低。 前期准备 配置ksql免密登录(必须) 在Kingbase数据库运行维护中&#xff0c;经常用到ksql工具登录数据库&#xff0c;本地免密登录…

钓鱼与木马实践(仅供参考不可实践)

声明:内容仅供学习&#xff0c;请勿违法使用&#xff0c;违者后果自负 一.部署云服务器 购买一台云服务器,Windows&#xff08; 中文 &#xff09;版本即可 华为云官网&#xff1a;https://www.huaweicloud.com/ 登录后进入控制台购买完成后远程登录云服务器 二.部署WEB运行…

Zookeeper的学习笔记

Zookeeper概念 Zookeeper是一个树形目录服务&#xff0c;简称zk。 Zookeeper是一个分布式的、开源的分布式应用程序的协调服务 Zookeeper提供主要的功能包括&#xff1a;配置管理&#xff0c;分布式锁&#xff0c;集群管理 Zookeeper命令操作 zk数据模型 zk中的每一个节点…

springMVC-自定义拦截器

一、先来看一个需求 Spring MVC也可以使用拦截器对请求进行拦截处理&#xff0c;用户可以自定义拦截器来实现特定的功能&#xff0c;比如对临时文件的清除&#xff0c;或者对某些ip地址进行拦截器. 二、springMVC自定义拦截器介绍 (1)需要实现一个接口 HandlerInterceptor. (…

大创项目推荐 深度学习+python+opencv实现动物识别 - 图像识别

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数&#xff1a;3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 inception_v3网络5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; *…

Stable-diffusion-webui本地部署和简要介绍

Stable Diffusion 是一款基于人工智能技术开发的绘画软件&#xff0c;它可以帮助艺术家和设计师快速创建高品质的数字艺术作品。是2022年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像&#xff0c;同时也可以应用于其他任务&#xff0c;如内补绘制、…

MySQL数据库 视图

目录 视图概述 语法 检查选项 视图的更新 视图作用 案例 视图概述 视图(View)是一种虚拟存在的表。视图中的数据并不在数据库中实际存在&#xff0c;行和列数据来自定义视图的查询中使用的表&#xff0c;并且是在使用视图时动态生成的。 通俗的讲&#xff0c;视图只保存…

eventbus,在this.$on监听事件时无法在获取数据

问题&#xff1a;vue中eventbus被多次触发&#xff0c;在this.$on监听事件时&#xff0c;内部的this发生改变导致&#xff0c;无法在vue实例中添加数据。 项目场景 一开始的需求是这样的&#xff0c;为了实现两个组件(A.vue ,B.vue)之间的数据传递。 页面A&#xff0c;点击页面…

ffmpeg 硬件解码零拷贝unity 播放

ffmpeg硬件解码问题 ffmpeg 在硬件解码&#xff0c;一般来说&#xff0c;我们解码使用cuda方式&#xff0c;当然&#xff0c;最好的方式是不要确定一定是cuda&#xff0c;客户的显卡不一定有cuda&#xff0c;windows 下&#xff0c;和linux 下要做一些适配工作&#xff0c;最麻…

Linux创建目录命令@mkdir

目录 命令原型概念作用命令不带参数命令带参数 总结 命令原型 mkdir [ -p ] Linux路径 》参数必填&#xff0c;表示Linux路径&#xff0c;即要创建的文件夹的路径&#xff0c;相对路径或绝对路径均可 》 -p 选项可选择写或不写。-p 表示自动创建不存在的父目录 &#xff08;创…

左值右值引用,完美转发

1.c98/03&#xff0c;类模板和函数模板只能含固定数量的模板参数&#xff0c;c11的新特性可以创建接受可变参数的函数模板和类模板 //Args是一个模板参数包&#xff0c;args是一个函数形参参数包 //声明一个参数包Args… args,这个参数包可以包括0到任意个模板参数 template&l…

成功案例分享:物业管理小程序如何助力打造智慧社区

随着科技的进步和互联网的普及&#xff0c;数字化转型已经渗透到各个行业&#xff0c;包括物业管理。借助小程序这一轻量级应用&#xff0c;物业管理可以实现线上线下服务的无缝对接&#xff0c;提升服务质量&#xff0c;优化用户体验。本文将详细介绍如何通过乔拓云网设计小程…

如何确保游戏翻译的质量

随着全球化的加速和游戏行业的国际化&#xff0c;越来越多的玩家开始接触并喜欢玩国际游戏。然而&#xff0c;由于语言障碍&#xff0c;很多玩家无法理解游戏中的文本和对话&#xff0c;这严重影响了游戏体验。因此&#xff0c;游戏翻译变得尤为重要。那么&#xff0c;如何确保…

【模式识别】探秘判别奥秘:Fisher线性判别算法的解密与实战

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《模式之谜 | 数据奇迹解码》⏰诗赋清音&#xff1a;云生高巅梦远游&#xff0c; 星光点缀碧海愁。 山川深邃情难晤&#xff0c; 剑气凌云志自修。 目录 &#x1f30c;1 初识模式识…

助力智能人群检测计数,基于DETR(DEtectionTRansformer)开发构建通用场景下人群检测计数识别系统

在一些人流量比较大的场合&#xff0c;或者是一些特殊时刻、时段、节假日等特殊时期下&#xff0c;密切关注当前系统所承载的人流量是十分必要的&#xff0c;对于超出系统负荷容量的情况做到及时预警对于管理团队来说是保障人员安全的重要手段&#xff0c;本文的主要目的是想要…

读算法霸权笔记01_数学杀伤性武器

1. 数学应用助推数据经济&#xff0c;但这些应用的建立是基于不可靠的人类所做的选择 1.1. 房地产危机&#xff0c;大型金融机构倒闭&#xff0c;失业率上升&#xff0c;在幕后运用着神奇公式的数学家们成为这些灾难的帮凶 1.2. 数学逐渐不再关注全球金融市场动态&#xff0c…

Flutter笔记:Web支持原理与实践

Flutter笔记 Web支持原理与实践 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com CSDN&#xff1a;https://blog.csdn.net/qq_28550263/article/details/135037756 华为开发者社区…

任天堂,steam游戏机通过type-c给VR投屏与PD快速充电的方案 三type-c口投屏转接器

游戏手柄这个概念&#xff0c;最早要追溯到二十年前玩FC游戏的时候&#xff0c;那时候超级玛丽成为了许多人童年里难忘的回忆&#xff0c;虽然长大了才知道超级玛丽是翻译错误&#xff0c;应该是任天堂的超级马里奥&#xff0c;不过这并不影响大家对他的喜爱。 当时FC家用机手柄…