大创项目推荐 深度学习+python+opencv实现动物识别 - 图像识别

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 卷积神经网络
    • 3.1卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 inception_v3网络
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的动物识别算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

利用深度学习对野生动物进行自动识别分类,可以大大提高野生动物监测效率,为野生动物保护策略的制定提供可靠的数据支持。但是目前野生动物的自动识别仍面临着监测图像背景信息复杂、质量低造成的识别准确率低的问题,影响了深度学习技术在野生动物保护领域的应用落地。为了实现高准确率的野生动物自动识别,本项目基于卷积神经网络实现图像动物识别。

2 实现效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。
在这里插入图片描述

3.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。
在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。
在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            filters=32,             # 卷积层神经元(卷积核)数目
            kernel_size=[5, 5],     # 感受野大小
            padding='same',         # padding策略(vaild 或 same)
            activation=tf.nn.relu   # 激活函数
        )
        self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.conv2 = tf.keras.layers.Conv2D(
            filters=64,
            kernel_size=[5, 5],
            padding='same',
            activation=tf.nn.relu
        )
        self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))
        self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]
        x = self.pool1(x)                       # [batch_size, 14, 14, 32]
        x = self.conv2(x)                       # [batch_size, 14, 14, 64]
        x = self.pool2(x)                       # [batch_size, 7, 7, 64]
        x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]
        x = self.dense1(x)                      # [batch_size, 1024]
        x = self.dense2(x)                      # [batch_size, 10]
        output = tf.nn.softmax(x)
        return output

4 inception_v3网络

简介
如果 ResNet 是为了更深,那么 Inception 家族就是为了更宽。Inception
的作者对训练更大型网络的计算效率尤其感兴趣。换句话说:怎样在不增加计算成本的前提下扩展神经网络?

网路结构图
在这里插入图片描述
主要改动
在这里插入图片描述

  • 将7×7卷积分解为3个3×3的卷积。
  • 35×35的Inception模块采用图1所示结构,之后采用图5类似结构进行下采样
  • 17×17的Inception模块采用图2所示结构,也是采用图5类似结构下采样
  • 8×8的Inception模块采用图3所示结构,进行较大维度的提升。

Tensorflow实现代码



    import os
    import keras
    import numpy as np
    import tensorflow as tf
    from tensorflow.keras import layers
    from tensorflow.keras.models import Model
    config = tf.compat.v1.ConfigProto()
    config.gpu_options.allow_growth = True      # TensorFlow按需分配显存
    config.gpu_options.per_process_gpu_memory_fraction = 0.5  # 指定显存分配比例

    inceptionV3_One={'1a':[64,48,64,96,96,32],
                     '2a':[64,48,64,96,96,64],
                     '3a':[64,48,64,96,96,64]
    }


    inceptionV3_Two={'1b':[192,128,128,192,128,128,128,128,192,192],
                     '2b':[192,160,160,192,160,160,160,160,192,192],
                     '3b':[192,160,160,192,160,160,160,160,192,192],
                     '4b':[192,192,192,192,192,192,192,192,192,192]
    }
    keys_two=(list)(inceptionV3_Two.keys())
    
    inceptionV3_Three={
                    '1c':[320,384,384,384,448,384,384,384,192],
                    '2c':[320,384,384,384,448,384,384,384,192]
    }
    keys_three=(list)(inceptionV3_Three.keys())
    
    def InceptionV3(inceptionV3_One,inceptionV3_Two,inceptionV3_Three):
        keys_one=(list)(inceptionV3_One.keys())
        keys_two = (list)(inceptionV3_Two.keys())
        keys_three = (list)(inceptionV3_Three.keys())
    
        input=layers.Input(shape=[299,299,3])
    
        # 输入部分
        conv1_one = layers.Conv2D(32, kernel_size=[3, 3], strides=[2, 2], padding='valid')(input)
        conv1_batch=layers.BatchNormalization()(conv1_one)
        conv1relu=layers.Activation('relu')(conv1_batch)
        conv2_one = layers.Conv2D(32, kernel_size=[3, 3], strides=[1,1],padding='valid')(conv1relu)
        conv2_batch=layers.BatchNormalization()(conv2_one)
        conv2relu=layers.Activation('relu')(conv2_batch)
        conv3_padded = layers.Conv2D(64, kernel_size=[3, 3], strides=[1,1],padding='same')(conv2relu)
        conv3_batch=layers.BatchNormalization()(conv3_padded)
        con3relu=layers.Activation('relu')(conv3_batch)
        pool1_one = layers.MaxPool2D(pool_size=[3, 3], strides=[2, 2])(con3relu)
        conv4_one = layers.Conv2D(80, kernel_size=[3,3], strides=[1,1], padding='valid')(pool1_one)
        conv4_batch=layers.BatchNormalization()(conv4_one)
        conv4relu=layers.Activation('relu')(conv4_batch)
        conv5_one = layers.Conv2D(192, kernel_size=[3, 3], strides=[2,2], padding='valid')(conv4relu)
        conv5_batch = layers.BatchNormalization()(conv5_one)
        x=layers.Activation('relu')(conv5_batch)
    
        """
            filter11:1x1的卷积核个数
            filter13:3x3卷积之前的1x1卷积核个数
            filter33:3x3卷积个数
            filter15:使用3x3卷积代替5x5卷积之前的1x1卷积核个数
            filter55:使用3x3卷积代替5x5卷积个数
            filtermax:最大池化之后的1x1卷积核个数
        """
        for i in range(3):
            conv11 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][0]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion11 = layers.BatchNormalization()(conv11)
            conv11relu = layers.Activation('relu')(batchnormaliztion11)
    
            conv13 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][1]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion13 = layers.BatchNormalization()(conv13)
            conv13relu = layers.Activation('relu')(batchnormaliztion13)
            conv33 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][2]), kernel_size=[5, 5], strides=[1, 1], padding='same')(conv13relu)
            batchnormaliztion33 = layers.BatchNormalization()(conv33)
            conv33relu = layers.Activation('relu')(batchnormaliztion33)
    
            conv1533 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][3]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion1533 = layers.BatchNormalization()(conv1533)
            conv1522relu = layers.Activation('relu')(batchnormaliztion1533)
            conv5533first = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][4]), kernel_size=[3, 3], strides=[1, 1], padding='same')(conv1522relu)
            batchnormaliztion5533first = layers.BatchNormalization()(conv5533first)
            conv5533firstrelu = layers.Activation('relu')(batchnormaliztion5533first)
            conv5533last = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][4]), kernel_size=[3, 3], strides=[1, 1], padding='same')(conv5533firstrelu)
            batchnormaliztion5533last = layers.BatchNormalization()(conv5533last)
            conv5533lastrelu = layers.Activation('relu')(batchnormaliztion5533last)
    
            maxpool = layers.AveragePooling2D(pool_size=[3, 3], strides=[1, 1], padding='same')(x)
            maxconv11 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][5]), kernel_size=[1, 1], strides=[1, 1], padding='same')(maxpool)
            batchnormaliztionpool = layers.BatchNormalization()(maxconv11)
            convmaxrelu = layers.Activation('relu')(batchnormaliztionpool)
    
            x=tf.concat([
                conv11relu,conv33relu,conv5533lastrelu,convmaxrelu
            ],axis=3)
    
        conv1_two = layers.Conv2D(384, kernel_size=[3, 3], strides=[2, 2], padding='valid')(x)
        conv1batch=layers.BatchNormalization()(conv1_two)
        conv1_tworelu=layers.Activation('relu')(conv1batch)
    
        conv2_two = layers.Conv2D(64, kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
        conv2batch=layers.BatchNormalization()(conv2_two)
        conv2_tworelu=layers.Activation('relu')(conv2batch)
        conv3_two = layers.Conv2D( 96, kernel_size=[3, 3], strides=[1,1], padding='same')(conv2_tworelu)
        conv3batch=layers.BatchNormalization()(conv3_two)
        conv3_tworelu=layers.Activation('relu')(conv3batch)
        conv4_two = layers.Conv2D( 96, kernel_size=[3, 3], strides=[2, 2], padding='valid')(conv3_tworelu)
        conv4batch=layers.BatchNormalization()(conv4_two)
        conv4_tworelu=layers.Activation('relu')(conv4batch)
    
        maxpool = layers.MaxPool2D(pool_size=[3, 3], strides=[2, 2])(x)
        x=tf.concat([
            conv1_tworelu,conv4_tworelu,maxpool
        ],axis=3)
        """
            filter11:1x1的卷积核个数
            filter13:使用1x3,3x1卷积代替3x3卷积之前的1x1卷积核个数
            filter33:使用1x3,3x1卷积代替3x3卷积的个数
            filter15:使用1x3,3x1,1x3,3x1卷积卷积代替5x5卷积之前的1x1卷积核个数
            filter55:使用1x3,3x1,1x3,3x1卷积代替5x5卷积个数
            filtermax:最大池化之后的1x1卷积核个数
        """
        for i in range(4):
            conv11 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][0]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion11 = layers.BatchNormalization()(conv11)
            conv11relu=layers.Activation('relu')(batchnormaliztion11)
    
            conv13 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][1]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion13 = layers.BatchNormalization()(conv13)
            conv13relu=layers.Activation('relu')(batchnormaliztion13)
            conv3313 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][2]), kernel_size=[1, 7], strides=[1, 1], padding='same')(conv13relu)
            batchnormaliztion3313 = layers.BatchNormalization()(conv3313)
            conv3313relu=layers.Activation('relu')(batchnormaliztion3313)
            conv3331 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][3]), kernel_size=[7, 1], strides=[1, 1], padding='same')(conv3313relu)
            batchnormaliztion3331 = layers.BatchNormalization()(conv3331)
            conv3331relu=layers.Activation('relu')(batchnormaliztion3331)
    
            conv15 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][4]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion15 = layers.BatchNormalization()(conv15)
            conv15relu=layers.Activation('relu')(batchnormaliztion15)
            conv1513first = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][5]), kernel_size=[1, 7], strides=[1, 1], padding='same')(conv15relu)
            batchnormaliztion1513first = layers.BatchNormalization()(conv1513first)
            conv1513firstrelu=layers.Activation('relu')(batchnormaliztion1513first)
            conv1531second = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][6]), kernel_size=[7, 1], strides=[1, 1], padding='same')(conv1513firstrelu)
            batchnormaliztion1531second = layers.BatchNormalization()(conv1531second)
            conv1531second=layers.Activation('relu')(batchnormaliztion1531second)
            conv1513third = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][7]), kernel_size=[1, 7], strides=[1, 1], padding='same')(conv1531second)
            batchnormaliztion1513third = layers.BatchNormalization()(conv1513third)
            conv1513thirdrelu=layers.Activation('relu')(batchnormaliztion1513third)
            conv1531last = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][8]), kernel_size=[7, 1], strides=[1, 1], padding='same')(conv1513thirdrelu)
            batchnormaliztion1531last = layers.BatchNormalization()(conv1531last)
            conv1531lastrelu=layers.Activation('relu')(batchnormaliztion1531last)
    
            maxpool = layers.AveragePooling2D(pool_size=[3, 3], strides=[1, 1], padding='same')(x)
            maxconv11 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][9]), kernel_size=[1, 1], strides=[1, 1], padding='same')(maxpool)
            maxconv11relu = layers.BatchNormalization()(maxconv11)
            maxconv11relu = layers.Activation('relu')(maxconv11relu)
    
            x=tf.concat([
                conv11relu,conv3331relu,conv1531lastrelu,maxconv11relu
            ],axis=3)
    
        conv11_three=layers.Conv2D(192, kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
        conv11batch=layers.BatchNormalization()(conv11_three)
        conv11relu=layers.Activation('relu')(conv11batch)
        conv33_three=layers.Conv2D(320, kernel_size=[3, 3], strides=[2, 2], padding='valid')(conv11relu)
        conv33batch=layers.BatchNormalization()(conv33_three)
        conv33relu=layers.Activation('relu')(conv33batch)
    
        conv7711_three=layers.Conv2D(192, kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
        conv77batch=layers.BatchNormalization()(conv7711_three)
        conv77relu=layers.Activation('relu')(conv77batch)
        conv7717_three=layers.Conv2D(192, kernel_size=[1, 7], strides=[1, 1], padding='same')(conv77relu)
        conv7717batch=layers.BatchNormalization()(conv7717_three)
        conv7717relu=layers.Activation('relu')(conv7717batch)
        conv7771_three=layers.Conv2D(192, kernel_size=[7, 1], strides=[1, 1], padding='same')(conv7717relu)
        conv7771batch=layers.BatchNormalization()(conv7771_three)
        conv7771relu=layers.Activation('relu')(conv7771batch)
        conv33_three=layers.Conv2D(192, kernel_size=[3, 3], strides=[2, 2], padding='valid')(conv7771relu)
        conv3377batch=layers.BatchNormalization()(conv33_three)
        conv3377relu=layers.Activation('relu')(conv3377batch)
    
        convmax_three=layers.MaxPool2D(pool_size=[3, 3], strides=[2, 2])(x)
        x=tf.concat([
            conv33relu,conv3377relu,convmax_three
        ],axis=3)
        """
            filter11:1x1的卷积核个数
            filter13:使用1x3,3x1卷积代替3x3卷积之前的1x1卷积核个数
            filter33:使用1x3,3x1卷积代替3x3卷积的个数
            filter15:使用3x3卷积代替5x5卷积之前的1x1卷积核个数
            filter55:使用3x3卷积代替5x5卷积个数
            filtermax:最大池化之后的1x1卷积核个数
            """
        for i in range(2):
            conv11 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][0]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion11 = layers.BatchNormalization()(conv11)
            conv11relu=layers.Activation('relu')(batchnormaliztion11)
    
            conv13 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][1]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion13 = layers.BatchNormalization()(conv13)
            conv13relu=layers.Activation('relu')(batchnormaliztion13)
            conv33left = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][2]), kernel_size=[1, 3], strides=[1, 1], padding='same')(conv13relu)
            batchnormaliztion33left = layers.BatchNormalization()(conv33left)
            conv33leftrelu=layers.Activation('relu')(batchnormaliztion33left)
            conv33right = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][3]), kernel_size=[3, 1], strides=[1, 1], padding='same')(conv33leftrelu)
            batchnormaliztion33right = layers.BatchNormalization()(conv33right)
            conv33rightrelu=layers.Activation('relu')(batchnormaliztion33right)
            conv33rightleft=tf.concat([
                conv33leftrelu,conv33rightrelu
            ],axis=3)
    
            conv15 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][4]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion15 = layers.BatchNormalization()(conv15)
            conv15relu=layers.Activation('relu')(batchnormaliztion15)
            conv1533 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][5]), kernel_size=[3, 3], strides=[1, 1], padding='same')(conv15relu)
            batchnormaliztion1533 = layers.BatchNormalization()(conv1533)
            conv1533relu=layers.Activation('relu')(batchnormaliztion1533)
            conv1533left = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][6]), kernel_size=[1, 3], strides=[1, 1], padding='same')(conv1533relu)
            batchnormaliztion1533left = layers.BatchNormalization()(conv1533left)
            conv1533leftrelu=layers.Activation('relu')(batchnormaliztion1533left)
            conv1533right = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][6]), kernel_size=[3, 1], strides=[1, 1], padding='same')(conv1533leftrelu)
            batchnormaliztion1533right = layers.BatchNormalization()(conv1533right)
            conv1533rightrelu=layers.Activation('relu')(batchnormaliztion1533right)
            conv1533leftright=tf.concat([
                conv1533right,conv1533rightrelu
            ],axis=3)
    
            maxpool = layers.AveragePooling2D(pool_size=[3, 3], strides=[1, 1],padding='same')(x)
            maxconv11 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][8]), kernel_size=[1, 1], strides=[1, 1], padding='same')(maxpool)
            batchnormaliztionpool = layers.BatchNormalization()(maxconv11)
            maxrelu = layers.Activation('relu')(batchnormaliztionpool)
    
            x=tf.concat([
                conv11relu,conv33rightleft,conv1533leftright,maxrelu
            ],axis=3)
    
        x=layers.GlobalAveragePooling2D()(x)
        x=layers.Dense(1000)(x)
        softmax=layers.Activation('softmax')(x)
        model_inceptionV3=Model(inputs=input,outputs=softmax,name='InceptionV3')
        return model_inceptionV3
    
    model_inceptionV3=InceptionV3(inceptionV3_One,inceptionV3_Two,inceptionV3_Three)
    model_inceptionV3.summary()



5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/264755.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Stable-diffusion-webui本地部署和简要介绍

Stable Diffusion 是一款基于人工智能技术开发的绘画软件,它可以帮助艺术家和设计师快速创建高品质的数字艺术作品。是2022年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,同时也可以应用于其他任务,如内补绘制、…

MySQL数据库 视图

目录 视图概述 语法 检查选项 视图的更新 视图作用 案例 视图概述 视图(View)是一种虚拟存在的表。视图中的数据并不在数据库中实际存在,行和列数据来自定义视图的查询中使用的表,并且是在使用视图时动态生成的。 通俗的讲,视图只保存…

eventbus,在this.$on监听事件时无法在获取数据

问题:vue中eventbus被多次触发,在this.$on监听事件时,内部的this发生改变导致,无法在vue实例中添加数据。 项目场景 一开始的需求是这样的,为了实现两个组件(A.vue ,B.vue)之间的数据传递。 页面A,点击页面…

ffmpeg 硬件解码零拷贝unity 播放

ffmpeg硬件解码问题 ffmpeg 在硬件解码,一般来说,我们解码使用cuda方式,当然,最好的方式是不要确定一定是cuda,客户的显卡不一定有cuda,windows 下,和linux 下要做一些适配工作,最麻…

Linux创建目录命令@mkdir

目录 命令原型概念作用命令不带参数命令带参数 总结 命令原型 mkdir [ -p ] Linux路径 》参数必填,表示Linux路径,即要创建的文件夹的路径,相对路径或绝对路径均可 》 -p 选项可选择写或不写。-p 表示自动创建不存在的父目录 (创…

左值右值引用,完美转发

1.c98/03,类模板和函数模板只能含固定数量的模板参数,c11的新特性可以创建接受可变参数的函数模板和类模板 //Args是一个模板参数包,args是一个函数形参参数包 //声明一个参数包Args… args,这个参数包可以包括0到任意个模板参数 template&l…

成功案例分享:物业管理小程序如何助力打造智慧社区

随着科技的进步和互联网的普及,数字化转型已经渗透到各个行业,包括物业管理。借助小程序这一轻量级应用,物业管理可以实现线上线下服务的无缝对接,提升服务质量,优化用户体验。本文将详细介绍如何通过乔拓云网设计小程…

如何确保游戏翻译的质量

随着全球化的加速和游戏行业的国际化,越来越多的玩家开始接触并喜欢玩国际游戏。然而,由于语言障碍,很多玩家无法理解游戏中的文本和对话,这严重影响了游戏体验。因此,游戏翻译变得尤为重要。那么,如何确保…

【模式识别】探秘判别奥秘:Fisher线性判别算法的解密与实战

​🌈个人主页:Sarapines Programmer🔥 系列专栏:《模式之谜 | 数据奇迹解码》⏰诗赋清音:云生高巅梦远游, 星光点缀碧海愁。 山川深邃情难晤, 剑气凌云志自修。 目录 🌌1 初识模式识…

助力智能人群检测计数,基于DETR(DEtectionTRansformer)开发构建通用场景下人群检测计数识别系统

在一些人流量比较大的场合,或者是一些特殊时刻、时段、节假日等特殊时期下,密切关注当前系统所承载的人流量是十分必要的,对于超出系统负荷容量的情况做到及时预警对于管理团队来说是保障人员安全的重要手段,本文的主要目的是想要…

读算法霸权笔记01_数学杀伤性武器

1. 数学应用助推数据经济,但这些应用的建立是基于不可靠的人类所做的选择 1.1. 房地产危机,大型金融机构倒闭,失业率上升,在幕后运用着神奇公式的数学家们成为这些灾难的帮凶 1.2. 数学逐渐不再关注全球金融市场动态&#xff0c…

Flutter笔记:Web支持原理与实践

Flutter笔记 Web支持原理与实践 作者:李俊才 (jcLee95):https://blog.csdn.net/qq_28550263 邮箱 :291148484163.com CSDN:https://blog.csdn.net/qq_28550263/article/details/135037756 华为开发者社区…

任天堂,steam游戏机通过type-c给VR投屏与PD快速充电的方案 三type-c口投屏转接器

游戏手柄这个概念,最早要追溯到二十年前玩FC游戏的时候,那时候超级玛丽成为了许多人童年里难忘的回忆,虽然长大了才知道超级玛丽是翻译错误,应该是任天堂的超级马里奥,不过这并不影响大家对他的喜爱。 当时FC家用机手柄…

【Android】存储读取权限管理理解和api 调研报告

背景 工作和学习需要了解android 权限管理和 对应的api 调用逻辑。 学习 内部路径 不用权限 /data/data/应用包名 相关API Context 类 getCacheDir 缓存路径 getCodeCacheDir 示意路径 getFilesDir 内部文件 文件路径 fileList (files 下的所有文件名&…

【Unity基础】9.地形系统Terrain

【Unity基础】9.地形系统Terrain 大家好,我是Lampard~~ 欢迎来到Unity基础系列博客,所学知识来自B站阿发老师~感谢 (一)地形编辑器Terrain (1)创建地形 游戏场景中大多数的山川河流地表地貌都是基…

【单调栈】LeetCode:2818操作使得分最大

作者推荐 map|动态规划|单调栈|LeetCode975:奇偶跳 涉及知识点 单调栈 题目 给你一个长度为 n 的正整数数组 nums 和一个整数 k 。 一开始,你的分数为 1 。你可以进行以下操作至多 k 次,目标是使你的分数最大: 选择一个之前没有选过的 非…

Pipelined-ADC设计二——结构指标及非理想因素(Part1)

本章将详细介绍电路各个模块的设计思路和设计中需要注意的关键点,给出流水线ADC中的非理想因素,并计算出流水线ADC各个模块具体指标。根据电路中信号的传输方向,依次介绍采样保持电路、Sub_ADC,MDAC 等模块的设计。(本…

CSS自适应分辨率 amfe-flexible 和 postcss-pxtorem:Webpack5 升级后相关插件和配置更新说明

前言 项目对应的 webpack5 版本如下: npm i webpack5.89.0 -D npm i webpack-cli5.1.4 -D升级插件 说明一下,我更喜欢固定版本号,这样随机bug会少很多,更可控~ npm i postcss-loader6.1.1 -D npm i postcss-pxtorem6.0.0 -D配…

Hive-high Avaliabl

hive—high Avaliable ​ hive的搭建方式有三种,分别是 ​ 1、Local/Embedded Metastore Database (Derby) ​ 2、Remote Metastore Database ​ 3、Remote Metastore Server ​ 一般情况下,我们在学习的时候直接使用hive –service metastore的方式…

基于SpringBoot简洁优雅的个人博客系统

源代码下载地址: 点击这里下载 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或…