【计算机视觉中的多视图几何系列】深入浅出理解针孔相机模型

温故而知新,可以为师矣!

一、参考资料

《计算机视觉中的多视图几何-第五章》-Richard Hartley, Andrew Zisserman.

二、针孔模型相关介绍

1. 重要概念

在这里插入图片描述

1.1 投影中心/摄像机中心/光心

投影中心称为摄像机中心,也称为光心。投影中心位于一个欧式坐标系的原点。

1.2 图像平面/聚焦平面

平面 Z = f Z=f Z=f 被称为图像平面聚焦平面

1.3 主轴/主射线

摄像机中心到图像平面的垂线称为摄像机的主轴主射线

1.4 主点

主轴与图像平面的交点称为主点

1.5 主平面(摄像机)

过摄像机中心平行于图像平面的平面称为摄像机的主平面

1.6 图像坐标系与摄像机坐标系

在这里插入图片描述

如上图所示,图像坐标系 ( x , y ) T (x,y)^T (x,y)T 和摄像机坐标系 ( x c a m , y c a m ) T (x_{cam},y_{cam})^T (xcam,ycam)T

2. 基本针孔模型

在这里插入图片描述

在针孔摄像机模型下,3维空间坐标为 X = ( X , Y , Z ) T X=(X, Y, Z)^T X=(X,Y,Z)T 的点 X X X 被投影到图像平面上的一点,该点是连接点 X X X 与投影中心的直线与图像平面的交点。根据相似三角形,可以很快地算出点 ( X , Y , Z ) T (X, Y , Z)^T (X,Y,Z)T 被映射到图像平面上点 ( f X / Z , f Y / Z , f ) T (fX/Z, fY/Z, f)^T (fX/Z,fY/Z,f)T 。略去最后一个图像坐标之后,从世界坐标到图像坐标的中心投影是:
( X , Y , Z ) T ↦ ( f X / Z , f Y / Z ) T ( 1 ) (X,Y,Z)^{T}\mapsto(fX/Z,fY/Z)^{T}\quad(1) (X,Y,Z)T(fX/Z,fY/Z)T(1)
这是从3维欧式空间 IR 3 \text{IR}^3 IR3 到 2维欧式空间 IR 2 \text{IR}^2 IR2 的一个映射

3. 投影矩阵

齐次坐标的概念:齐次坐标就是用N+1维去描述一个N维的坐标。

如果用齐次矢量表示世界和图像点,那么中心投影可以简单地表示成齐次坐标之间的线性映射。具体地说, 公式 ( 1 ) 公式(1) 公式(1) 可以写成如下矩阵乘积形式:
[ X Y Z 1 ] ↦ [ f x f y z ] = [ f 0 f 0 1 0 ] [ X Y Z 1 ] ( 2 ) \left.\left[\begin{array}{c}\mathbf{X}\\\mathbf{Y}\\\mathbf{Z}\\\mathbf{1}\end{array}\right.\right]\mapsto\left[\begin{array}{c}f\mathbf{x}\\f\mathbf{y}\\\mathbf{z}\end{array}\right]=\left[\begin{array}{cc}f&&&0\\&f&&0\\&&1&0\end{array}\right]\left[\begin{array}{c}\mathbf{X}\\\mathbf{Y}\\\mathbf{Z}\\\mathbf{1}\end{array}\right]\quad(2) XYZ1 fxfyz = ff1000 XYZ1 (2)
其中 [ f 0 f 0 1 0 ] \left[\begin{array}{cc}f&&&0\\&f&&0\\&&1&0\end{array}\right] ff1000 表示 3 ∗ 4 3*4 34 齐次摄像机投影矩阵,记作 P P P P P P 可以写成 d i a g ( f , f , 1 ) [ I ∣ 0 ] diag(f,f,1)[I|0] diag(f,f,1)[I∣0],其中 d i a g ( f , f , 1 ) diag(f,f,1) diag(f,f,1)对角矩阵,而 [ I ∣ 0 ] [I|0] [I∣0]表示矩阵分块成一个 3 ∗ 3 3*3 33恒等矩阵加上一个零列矢量。那么,中心投影的针孔模型的摄像机投影矩阵可以表示为:
P = d i a g ( f , f , 1 ) [ I ∣ 0 ] P=diag(f,f,1)[I|0] P=diag(f,f,1)[I∣0]

恒等矩阵的概念:恒等矩阵,又称为单位矩阵,是一个方阵,其对角线上的元素为1,其余元素均为0,记作 I I I或者 E E E。恒等矩阵的大小由其维度决定,例如3阶恒等矩阵是一个3x3的矩阵。

恒等矩阵在线性代数中具有很多重要的性质。例如,对于任意矩阵A,恒等矩阵1与A的乘积等于A本身。这是因为恒等矩阵的每个元素与A的对应元素相乘,并将其相加,得到的结果就是A本身。这个性质在矩阵的转置、逆运算等方面都有着重要的应用。

恒等矩阵在深度学习中也具有重要的作用。在神经网络中,恒等矩阵常被用作初始化权重矩阵初始化权重矩阵时,将其设置为恒等矩阵可以使得神经网络的初始状态更稳定。这是因为恒等矩阵具有一定的对称性和平衡性,可以避免梯度消失或梯度爆炸等问题,有助于提高模型的训练效果

恒等矩阵还可以用于矩阵的相似性度量。在图像处理和模式识别中,我们经常需要比较两个矩阵的相似性。通过计算两个矩阵之间的差异,可以得到它们的相似性度量。而恒等矩阵作为一个特殊的矩阵,与其他矩阵相比具有明显的差异,可以用于度量矩阵之间的相似性。

我们现在引入如下记号:世界点 X X X 用4维齐次矢量 ( X , Y , Z , 1 ) (X,Y,Z,1) (X,Y,Z,1)表示;图像点 x x x 被表示成3维齐次矢量的形式。则 公式 ( 2 ) 公式(2) 公式(2) 可以紧凑地写为:
x = P X x=PX x=PX

4. 主点偏置

公式 ( 1 ) 公式(1) 公式(1) 假定图像平面的坐标原点在主点上,因此一般情形的映射为:
( X , Y , Z ) T ↦ ( f X / Z + p x , f Y / Z + p y ) T (X,Y,Z)^{T}\mapsto(fX/Z+p_x,fY/Z+p_y)^{T} \\ (X,Y,Z)T(fX/Z+px,fY/Z+py)T
其中 ( p x , p y ) T (p_x,p_y)^T (px,py)T 是主点的坐标。该方程用齐次坐标可以表示为:
[ X Y Z 1 ] ↦ [ f x + Z p x f y + Z p y z ] = [ f p x 0 f p x 0 1 0 ] [ X Y Z 1 ] ( 3 ) \left.\left[\begin{array}{c}\mathbf{X}\\\mathbf{Y}\\\mathbf{Z}\\\mathbf{1}\end{array}\right.\right]\mapsto\left[\begin{array}{c}f\mathbf{x+Zp_x}\\f\mathbf{y+Zp_y}\\\mathbf{z}\end{array}\right]=\left[\begin{array}{cc}f&&p_x&0\\&f&p_x&0\\&&1&0\end{array}\right]\left[\begin{array}{c}\mathbf{X}\\\mathbf{Y}\\\mathbf{Z}\\\mathbf{1}\end{array}\right]\quad(3) XYZ1 fx+Zpxfy+Zpyz = ffpxpx1000 XYZ1 (3)
若记
K = [ f p x f p x 1 ] ( 4 ) K=\left[\begin{array}{cc}f&&p_x\\&f&p_x\\&&1\end{array}\right]\quad(4) K= ffpxpx1 (4)
公式 ( 3 ) 公式(3) 公式(3) 有一个简洁的形式:
x = K [ I ∣ 0 ] X c a m ( 5 ) x=K[I|0]X_{cam}\quad(5) x=K[I∣0]Xcam(5)
矩阵 K K K 称为摄像机标定矩阵,在 公式 ( 5 ) 公式(5) 公式(5) 中我们记 ( X , Y , Z , 1 ) T (X,Y,Z,1)^T (X,Y,Z,1)T X c a m X_{cam} Xcam 是为了强调摄像机被设定在一个欧式坐标系的原点且主轴沿着 z z z 轴的指向,而点 X c a m X_{cam} Xcam 按此坐标系表示。这样的坐标系可以称为摄像机坐标系

摄像机坐标系的原点为主点 z z z轴方向指向主轴

5. 摄像机旋转与位移

一般,3维空间点采用不同的欧式坐标系表示,称为世界坐标系。摄像机坐标系与世界坐标系通过旋转平移相联系。
在这里插入图片描述

世界坐标系和摄像机坐标系之间的欧式转换

如果 X ~ \widetilde{X} X 是一个3维非齐次矢量,表示世界坐标系中一点的坐标,而 X ~ c a m \widetilde{X}_{cam} X cam 是以摄像机坐标系来表示的同一点,那么我们可以记 X ~ c a m = R ( X ~ − C ~ ) \widetilde{X}_{cam}=R\left(\widetilde{X}-\widetilde{C}\right) X cam=R(X C ) ,其中 C ~ \widetilde{C} C 表示摄像机中心在世界坐标系中的坐标, R R R 是一个 3 ∗ 3 3*3 33 的旋转矩阵,表示摄像机坐标系的方位。这个方程在齐次坐标系下可以写成:
X c a m = [ R − R C ~ 0 T 1 ] [ X Y Z 1 ] = [ R − R C ~ 0 T 1 ] X ( 6 ) X_{cam}=\begin{bmatrix}R&-R\widetilde{C}\\0^{T}&1\end{bmatrix}\begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}=\begin{bmatrix}R&-R\widetilde{C}\\0^{T}&1\end{bmatrix}\mathbf{X}\quad(6) Xcam=[R0TRC 1] XYZ1 =[R0TRC 1]X(6)
把它与 公式 ( 5 ) 公式(5) 公式(5) 结合起来形成公式:
x = K R [ I ∣ − C ~ ] X ( 7 ) x=KR\left[I|-\widetilde{C}\right]X\quad(7) x=KR[IC ]X(7)
其中 X X X 用世界坐标系表示。这是由一个针孔模型给出的一般映射。

6. 摄像机内部参数与外部参数

公式 ( 7 ) 公式(7) 公式(7) 可以看出,一般的针孔摄像机 P = K R [ I ∣ − C ~ ] P=KR\left[I|-\widetilde{C}\right] P=KR[IC ] 有9个自由度:3个来自 K (元素 f , p x , p y ) K(元素 f,p_x, p_y) K(元素f,px,py,3个来自 R R R,3个来自 C ~ \widetilde{C} C 。包含在 K K K 中的参数称为摄像机内部参数摄像机的内部校准。包含在 R R R C ~ \widetilde{C} C 中的参数与摄像机在世界坐标系中的方位和位置有关,并称为外部参数外部校准

为方便起见,通常摄像机中心不明显标出,而把世界坐标系到图像坐标系的变换表示成 X ~ c a m = R X ~ + t \widetilde{X}_{cam}=R\widetilde{X}+t X cam=RX +t。在次情形时摄像机矩阵简化成:
P = k [ R ∣ t ] ( 8 ) P=k[R|t]\quad(8) P=k[Rt](8)
其中根据 公式 ( 7 ) 公式(7) 公式(7) t = − R C ~ t=-R\widetilde{C} t=RC

7. CCD摄像机

对于基本针孔模型,假定图像坐标在两个轴向上有等尺度的欧式坐标。但CCD摄像机的像素可能不是正方形。如果图像坐标以像素来测量,那么需要在每个方向上引入非等量尺度因子。具体地说,如果在 x x x y y y 方向上图像坐标单位距离的像素数分别是 m x m_x mx m y m_y my,那么由世界坐标到像素坐标的变换由 公式 ( 4 ) 公式(4) 公式(4) 左乘一个附加的因子 d i a g ( m x , m y , 1 ) diag(m_x,m_y,1) diag(mx,my,1) 而得到。因此一个CCD摄像机标定矩阵的一般形式是:
K = [ a x x 0 a y y 0 1 ] ( 9 ) K=\left[\begin{array}{cc}a_x&&x_0\\&a_y&y_0\\&&1\end{array}\right]\quad(9) K= axayx0y01 (9)
其中 a x = f m x a_x=fm_x ax=fmx a y = f m y a_y=fm_y ay=fmy 分别把摄像机的焦距换算成 x x x y y y 方向的像素量纲。同理, x ~ 0 = ( x 0 , y 0 ) T \widetilde{x}_0=(x_0,y_0)^T x 0=(x0,y0)T 是用像素量纲表示的主点,它的坐标是 x 0 = m x p x x_0=m_xp_x x0=mxpx y 0 = m y p y y_0=m_yp_y y0=mypy。因此,一个CCD摄像机有10个自由度

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/264240.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu及Docker 安装rabbitmq

安装ubuntu 前 先暴露端口: 5672 用于与mq服务器通信用 15672 管理界面使用的端口 docker命令:docker run -itd --name ubuntu -p 5672:5672 -p 15672:15672 ubuntu 进入docker : docker exec -it ubuntu /bin/bash 步骤: 1. 更新安装源…

算法学习系列(九):离散化

目录 引言一、离散化概念二、离散化模板三、例题四、测试 引言 这个离散化我的理解就是你如果要用到数组的下标进行存数,会有多个询问针对下标进行操作,然后这个下标特别的大,而且存的数也是特别的分散,举个例子就是有三个数&…

VScode 工作区配置 和 用户配置

一、工作区配置 通常不同的项目都有不同的配置,我一般都是使用eslint和prettier一起用,所以经常会有这几个文件: 这里简单介绍一下这几个文件的作用吧。 1.vscode文件夹下 一般有两个文件,extensions.json和settings.json。 e…

07 Vue3中的三元表达式

概述 三元表达式时JavaScript中比较常用的一种原生语法,能够在一行代码中实现if-else的分支逻辑。 在Vue的双大括号中,我们也可以使用三元表达式去实现一些简单的条件渲染。 基本用法 我们创建src/components/Demo07.vue,先尝试一下三元表…

【泛型中K T V E? Object等分别代表什么含 义】

✅ 泛型中K T V E? Object等分别代表什么含义 ✅ 典型解析✅代码示例 ✅ 典型解析 E - Element (在集合中使用,因为集合中存放的是元素) T-Type (Java 类) K- Key (键) V - Value (值) N - Number (数值类型) ? - 表示不确定的iava类型 (无限制通配符类型) …

linux 中 C++的环境搭建以及测试工具的简单介绍

文章目录 makefleCMakegdb调试 与 coredumpValgrind 内存检测gtest 单元测试 makefile 介绍 安装 : sudo apt install make makefile 的规则: 举例说明 包括:目标文件 、 依赖文件 、 生成规则 使用 : make make clean CMake : CMake是一个…

OpenHarmony 4.0 Release发布,同步升级API 10

不久之前,OpenHarmony 正式发布了4.0 版本,开发套件也同步升级到 API 10。相比 3.2 Release 版本,4.0 版本新增 4000 多个 ArkTS API,应用开发能力更加丰富;HDF 新增 200 多个 HDI 接口,硬件适配更加便捷&a…

浅谈在线监测系统与配电能效平台在供水水厂的应用

贾丽丽 安科瑞电气股份有限公司 上海嘉定 201800 【摘要】针对自来水厂工艺老化资金有限的问题,设计水厂在线监测系统,采用安科瑞,对原水滤后水、出厂水进行采样分析,并通过基于组态的上位机系统实现水质数据的实时监测。该系统…

听GPT 讲Rust源代码--src/tools(23)

File: rust/src/tools/clippy/rustc_tools_util/src/lib.rs 在Rust源代码中,rust/src/tools/clippy/rustc_tools_util/src/lib.rs文件的作用是为Clippy提供了一些实用工具和辅助函数。 该文件中定义了VersionInfo结构体,它有三个字段,分别为m…

opencv入门到精通——图像上的算术运算

目录 目标 图像加法 图像融合 按位运算 目标 学习图像的几种算术运算,例如加法,减法,按位运算等。 您将学习以下功能:cv.add,cv.addWeighted等。 图像加法 您可以通过OpenCV函数cv.add()或仅通过numpy操作res …

账号多、用户咨询量大无法及时回复?「互动管理」助力高效经营!

随着互联网行业不断向纵深发展,内容形态与营销场景也更加多元化。越来越多的品牌跑步入场,深耕社媒营销,建立多平台营销矩阵,借助社媒平台的全域态势助力品牌增长。 据云略《2023品牌新媒体矩阵营销洞察报告》显示,目前…

win11下配置visual studio 2022+PCL1.13.1

第一部分:visual studio2022 安装 vs官网网址如下:https://visualstudio.microsoft.com/zh-hans/vs/ 第一步:我们打开官网链接,按如下操作点击下载免费版本的exe文件 第二步:打开下载目录下的安装文件进行安装&#…

选择移动订货系统源码的四大原因

移动订货系统需要选择源码支持的厂家,有以下四个原因,其中第四个是比较重要的,大家点个关注点个赞,我们接着往下看。 1.可自行定制:支持源码的移动订货系统可以根据企业的具体需求进行定制开发,满足企业特定…

vue3 登录页和路由表开发

目录 应用场景/背景描述: 开发流程: 详细开发流程: 总结/分析: 背景描述 在上一篇的基础上开始开发,element-plusvue3 上一篇说道详细迁移的过程,如下: 所以我这篇开始了第一步&#xff0c…

Ubuntu20.04.2 Mate 安装后基本初始设置要点笔记

序言: 有几款Linux比较稳定而且LTS长期支持,窗口也比较干净有特色,CentOS、Ubuntu、Debian、Mint 都是挺不错的OS,因为LTS,所以不像Rolling版那样改动频发,为长期应用提供了比较好的保障。下面是 Ubuntu20…

【Filament】绘制立方体

1 前言 本文主要介绍使用 Filament 绘制彩色立方体,读者如果对 Filament 不太熟悉,请回顾以下内容。 Filament环境搭建绘制三角形绘制矩形绘制圆形 2 绘制立方体 本文项目结构如下,完整代码资源 → Filament绘制立方体。 2.1 自定义基类 为…

【计算机系统结构实验】实验5 多核编程(OpenMP编程)

5.1 实验目的 加深对多核处理器架构的理解; 掌握使用OpenMP进行多线程编程的基本方法; 学习Windows和OpenEuler环境下多核编程的过程和time命令; 5.2 实验平台 需要多核处理器的计算机和微软编程工具Visual Studio 2012。Taishan服务器&…

Mac使用Vmware Fusion虚拟机配置静态ip地址

一、设置虚拟机的网络为NAT 二、修改虚拟机的网络适配器网络 1、查看虚拟机的网卡 cd /etc/sysconfig/network-scripts#有些系统显示的是ens33,ens160等等 #不同的系统和版本,都会有所不同 #Centos8中默认是ens160,在RedHat/Centos7则为ens33 2、查看网…

封装Detours用于Python中x64函数hook

Detours 代码仓库: https://github.com/microsoft/Detours x64写一个任意地址hook要比x86麻烦的多,所以这里直接封装框架来用于x64的hook。 Detours是微软发布的一个API hook框架,同时支持x86和x64,看文档说也支持ARM和ARM64的Windows。 …

【Linux笔记】网络操作命令详细介绍

🍎个人博客:个人主页 🏆个人专栏:Linux学习 ⛳️ 功不唐捐,玉汝于成 前言: 网络操作是Linux系统中常见的任务之一,它涵盖了测试网络连接、配置网络接口、显示网络统计信息以及远程登录和文件传…