Mysql的SQL优化和锁

  • 👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家
  • 📕系列专栏:Spring源码、JUC源码、Kafka原理、分布式技术原理、数据库技术
  • 🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦
  • 🍂博主正在努力完成2023计划中:源码溯源,一探究竟
  • 📝联系方式:nhs19990716,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬👀

文章目录

  • SQL优化
    • 插入数据
      • insert
      • 大批量插入数据
    • 主键优化
    • order by优化
    • group by优化
    • limit优化
    • count优化
      • 概述
      • count用法
    • update优化
    • 概述
    • 全局锁
      • 介绍
      • 语法
      • 特点
    • 表级锁
      • 介绍
      • 表锁
      • 元数据锁
      • 意向锁
    • 行级锁
      • 介绍
      • 行锁
      • 间隙锁&临键锁

SQL优化

插入数据

insert

如果我们需要一次性往数据库表中插入多条记录,可以从以下三个方面进行优化。

insert into tb_test values(1,'tom');
insert into tb_test values(2,'cat');
insert into tb_test values(3,'jerry');
.....

1). 优化方案一

批量插入数据

Insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');

2). 优化方案二

手动控制事务

start transaction;
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
insert into tb_test values(4,'Tom'),(5,'Cat'),(6,'Jerry');
insert into tb_test values(7,'Tom'),(8,'Cat'),(9,'Jerry');
commit;

3). 优化方案三

主键顺序插入,性能要高于乱序插入。

主键乱序插入 : 8 1 9 21 88 2 4 15 89 5 7 3

主键顺序插入 : 1 2 3 4 5 7 8 9 15 21 88 89

顺序插入数据时性能高的原因主要有以下几点:

  1. 磁盘顺序写入:当数据按顺序插入时,数据库系统往往可以将数据按照顺序一次性地写入磁盘,这样可以最大限度地减少磁盘寻址和磁盘头的移动,提高了磁盘的写入效率。
  2. 减少随机IO:随机插入可能导致频繁的随机磁盘读写,而顺序插入则可以减少随机IO的次数,降低了磁盘的读写延迟。
  3. 减少索引维护开销:数据库在插入数据时需要更新相关的索引结构,顺序插入可以减少索引的分裂和维护开销,提高了插入数据的效率。

综上所述,顺序插入数据可以最大程度地优化磁盘IO,减少随机IO,降低索引维护开销,从而提高插入数据的性能。

大批量插入数据

如果一次性需要插入大批量数据(比如: 几百万的记录),使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:

在这里插入图片描述

可以执行如下指令,将数据脚本文件中的数据加载到表结构中:

-- 客户端连接服务端时,加上参数 -–local-infile
mysql –-local-infile -u root -p

-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;

-- 执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table tb_user fields
terminated by ',' lines terminated by '\n' ;

主键顺序插入性能高于乱序插入

示例演示:

A. 创建表结构

CREATE TABLE `tb_user` (
    `id` INT(11) NOT NULL AUTO_INCREMENT,
    `username` VARCHAR(50) NOT NULL,
    `password` VARCHAR(50) NOT NULL,
    `name` VARCHAR(20) NOT NULL,
    `birthday` DATE DEFAULT NULL,
    `sex` CHAR(1) DEFAULT NULL,
    PRIMARY KEY (`id`),
    UNIQUE KEY `unique_user_username` (`username`)
) ENGINE=INNODB DEFAULT CHARSET=utf8 ;

B. 设置参数

-- 客户端连接服务端时,加上参数 -–local-infile
mysql –-local-infile -u root -p

-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;

C. load加载数据

load data local infile '/root/load_user_100w_sort.sql' into table tb_user fields terminated by ',' lines terminated by '\n' ;

在这里插入图片描述

我们看到,插入100w的记录,17s就完成了,性能很好。

在load时,主键顺序插入性能高于乱序插入

主键优化

在上一小节,我们提到,主键顺序插入的性能是要高于乱序插入的。 这一小节,就来介绍一下具体的原因,然后再分析一下主键又该如何设计。

1). 数据组织方式

在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。

在这里插入图片描述

行数据,都是存储在聚集索引的叶子节点上的。而我们之前也讲解过InnoDB的逻辑结构图:

在这里插入图片描述

在InnoDB引擎中,数据行是记录在逻辑结构 page 页中的,而每一个页的大小是固定的,默认16K。那也就意味着, 一个页中所存储的行也是有限的,如果插入的数据行row在该页存储不小,将会存储到下一个页中,页与页之间会通过指针连接。

2). 页分裂

页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据过大,会行溢出),根据主键排列。

A. 主键顺序插入效果

①. 从磁盘中申请页, 主键顺序插入

在这里插入图片描述

②. 第一个页没有满,继续往第一页插入

在这里插入图片描述

③. 当第一个也写满之后,再写入第二个页,页与页之间会通过指针连接

在这里插入图片描述

④. 当第二页写满了,再往第三页写入

在这里插入图片描述

B. 主键乱序插入效果

①. 加入1#,2#页都已经写满了,存放了如图所示的数据

在这里插入图片描述

②. 此时再插入id为50的记录,我们来看看会发生什么现象

会再次开启一个页,写入新的页中吗?

在这里插入图片描述

不会。因为,索引结构的叶子节点是有顺序的。按照顺序,应该存储在47之后。

在这里插入图片描述

但是47所在的1#页,已经写满了,存储不了50对应的数据了。 那么此时会开辟一个新的页 3#。

在这里插入图片描述

但是并不会直接将50存入3#页,而是会将1#页后一半的数据,移动到3#页,然后在3#页,插入50。

在这里插入图片描述

移动数据,并插入id为50的数据之后,那么此时,这三个页之间的数据顺序是有问题的。 1#的下一个页,应该是3#, 3#的下一个页是2#。 所以,此时,需要重新设置链表指针。

在这里插入图片描述

上述的这种现象,称之为 “页分裂”,是比较耗费性能的操作。

3). 页合并

目前表中已有数据的索引结构(叶子节点)如下:

在这里插入图片描述

当我们对已有数据进行删除时,具体的效果如下:

当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。

在这里插入图片描述

当我们继续删除2#的数据记录

在这里插入图片描述

当页中删除的记录达到 MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间使用。

在这里插入图片描述

删除数据,并将页合并之后,再次插入新的数据21,则直接插入3#页

在这里插入图片描述

这个里面所发生的合并页的这个现象,就称之为 “页合并”。

MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。

4). 索引设计原则

  • 满足业务需求的情况下,尽量降低主键的长度。
  • 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。
  • 尽量不要使用UUID做主键或者是其他自然主键,如身份证号。(有缺商贷,分布式ID)
  • 业务操作时,避免对主键的修改。

在这里插入图片描述

order by优化

MySQL的排序,有两种方式:

Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sortbuffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。

Using index : 通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不需要额外排序,操作效率高。

对于以上的两种排序方式,Using index的性能高,而Using filesort的性能低,我们在优化排序操作时,尽量要优化为 Using index。

接下来,我们来做一个测试:

A. 数据准备

把之前测试时,为tb_user表所建立的部分索引直接删除掉

drop index idx_user_phone on tb_user;
drop index idx_user_phone_name on tb_user;
drop index idx_user_name on tb_user;

在这里插入图片描述

B. 执行排序SQL

explain select id,age,phone from tb_user order by age ;

在这里插入图片描述

explain select id,age,phone from tb_user order by age, phone ;

在这里插入图片描述

由于 age, phone 都没有索引,所以此时再排序时,出现Using filesort, 排序性能较低。

C. 创建索引

-- 创建索引
create index idx_user_age_phone_aa on tb_user(age,phone);

D. 创建索引后,根据age, phone进行升序排序

explain select id,age,phone from tb_user order by age;

在这里插入图片描述

explain select id,age,phone from tb_user order by age , phone;

在这里插入图片描述

建立索引之后,再次进行排序查询,就由原来的Using filesort, 变为了 Using index,性能就是比较高的了。

E. 创建索引后,根据age, phone进行降序排序

explain select id,age,phone from tb_user order by age desc , phone desc ;

也出现 Using index, 但是此时Extra中出现了 Backward index scan,这个代表反向扫描索引,因为在MySQL中我们创建的索引,默认索引的叶子节点是从小到大排序的,而此时我们查询排序时,是从大到小,所以,在扫描时,就是反向扫描,就会出现 Backward index scan。 在MySQL8版本中,支持降序索引,我们也可以创建降序索引。

F. 根据phone,age进行升序排序,phone在前,age在后。

explain select id,age,phone from tb_user order by phone , age;

在这里插入图片描述

排序时,也需要满足最左前缀法则,否则也会出现 filesort。因为在创建索引的时候, age是第一个字段,phone是第二个字段,所以排序时,也就该按照这个顺序来,否则就会出现 Usingfilesort。(排序必须要按照顺序)

F. 根据age, phone进行降序一个升序,一个降序

explain select id,age,phone from tb_user order by age asc , phone desc ;

在这里插入图片描述

因为创建索引时,如果未指定顺序,默认都是按照升序排序的,而查询时,一个升序,一个降序,此时就会出现Using filesort。

在这里插入图片描述

为了解决上述的问题,我们可以创建一个索引,这个联合索引中 age 升序排序,phone 倒序排序。

G. 创建联合索引(age 升序排序,phone 倒序排序)

create index idx_user_age_phone_ad on tb_user(age asc ,phone desc);

在这里插入图片描述

H. 然后再次执行如下SQL

explain select id,age,phone from tb_user order by age asc , phone desc ;

在这里插入图片描述

升序/降序联合索引结构图示:

在这里插入图片描述

在这里插入图片描述

由上述的测试,我们得出order by优化原则:

A. 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。

B. 尽量使用覆盖索引。

C. 多字段排序, 一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。

D. 如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小sort_buffer_size(默认256k)。

group by优化

分组操作,我们主要来看看索引对于分组操作的影响。

首先我们先将 tb_user 表的索引全部删除掉 。

drop index idx_user_pro_age_sta on tb_user;
drop index idx_email_5 on tb_user;
drop index idx_user_age_phone_aa on tb_user;
drop index idx_user_age_phone_ad on tb_user;

接下来,在没有索引的情况下,执行如下SQL,查询执行计划:

explain select profession , count(*) from tb_user group by profession ;

在这里插入图片描述

然后,我们在针对于 profession , age, status 创建一个联合索引。

create index idx_user_pro_age_sta on tb_user(profession , age , status);

紧接着,再执行前面相同的SQL查看执行计划。

explain select profession , count(*) from tb_user group by profession ;

在这里插入图片描述

再执行如下的分组查询SQL,查看执行计划:

在这里插入图片描述

我们发现,如果仅仅根据age分组,就会出现 Using temporary ;而如果是 根据profession,age两个字段同时分组,则不会出现 Using temporary。原因是因为对于分组操作,在联合索引中,也是符合最左前缀法则的。

所以,在分组操作中,我们需要通过以下两点进行优化,以提升性能:

A. 在分组操作时,可以通过索引来提高效率。

B. 分组操作时,索引的使用也是满足最左前缀法则的。

limit优化

在数据量比较大时,如果进行limit分页查询,在查询时,越往后,分页查询效率越低。

我们一起来看看执行limit分页查询耗时对比:

在这里插入图片描述

通过测试我们会看到,越往后,分页查询效率越低,这就是分页查询的问题所在。

因为,当在进行分页查询时,如果执行 limit 2000000,10 ,此时需要MySQL排序前2000010 记录,仅仅返回 2000000 - 2000010 的记录,其他记录丢弃,查询排序的代价非常大 。

优化思路: 一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。

explain select * from tb_sku t , (select id from tb_sku order by id limit 2000000,10) a where t.id = a.id;

还有一个比较有用的优化方案就是子查询优化,先找出第一条数据,然后大于等于这条数据的id就是要获取的数据

缺点:数据必须是连续的,可以说不能有where条件,where条件会筛选数据,导致数据失去连续性

select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100

count优化

概述

select count(*) from tb_user ;

在之前的测试中,我们发现,如果数据量很大,在执行count操作时,是非常耗时的。

  • MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高; 但是如果是带条件的count,MyISAM也慢。
  • InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。

如果说要大幅度提升InnoDB表的count效率,主要的优化思路:自己计数(可以借助于redis这样的数据库进行,但是如果是带条件的count又比较麻烦了)。

count用法

count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是NULL,累计值就加 1,否则不加,最后返回累计值。

用法:count(*)、count(主键)、count(字段)、count(数字)

count用法含义
count(主键)InnoDB 引擎会遍历整张表,把每一行的 主键id 值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为null)
count(字段)没有not null 约束 : InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加。有not null 约束:InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。
count(数字)InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1”进去,直接按行进行累加。
count(*)InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。

按照效率排序的话,count(字段) < count(主键 id) < count(1) ≈ count(),所以尽量使用 count()。

update优化

我们主要需要注意一下update语句执行时的注意事项。

update course set name = 'javaEE' where id = 1 ;

当我们在执行删除的SQL语句时,会锁定id为1这一行的数据,然后事务提交之后,行锁释放。

但是当我们在执行如下SQL时。

update course set name = 'SpringBoot' where name = 'PHP' ;

当我们开启多个事务,在执行上述的SQL时,我们发现行锁升级为了表锁。 导致该update语句的性能大大降低。

InnoDB的行锁是针对索引加的锁,不是针对记录加的锁 ,并且该索引不能失效,否则会从行锁升级为表锁 。

概述

锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源(CPU、RAM、I/O)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。

MySQL中的锁,按照锁的粒度分,分为以下三类:

  • 全局锁:锁定数据库中的所有表。
  • 表级锁:每次操作锁住整张表。
  • 行级锁:每次操作锁住对应的行数据。

全局锁

介绍

全局锁就是对整个数据库实例加锁,加锁后整个实例就处于只读状态,后续的DML的写语句,DDL语句,已经更新操作的事务提交语句都将被阻塞。

其典型的使用场景是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的完整性。

为什么全库逻辑备份,就需要加全就锁呢?

A. 我们一起先来分析一下不加全局锁,可能存在的问题。

假设在数据库中存在这样三张表: tb_stock 库存表,tb_order 订单表,tb_orderlog 订单日志表。

在这里插入图片描述

  • 在进行数据备份时,先备份了tb_stock库存表。
  • 然后接下来,在业务系统中,执行了下单操作,扣减库存,生成订单(更新tb_stock表,插入tb_order表)。
  • 然后再执行备份 tb_order表的逻辑。
  • 业务中执行插入订单日志操作。
  • 最后,又备份了tb_orderlog表。

此时备份出来的数据,是存在问题的。因为备份出来的数据,tb_stock表与tb_order表的数据不一致(有最新操作的订单信息,但是库存数没减)。

那如何来规避这种问题呢? 此时就可以借助于MySQL的全局锁来解决。

B. 再来分析一下加了全局锁后的情况

在这里插入图片描述

对数据库进行进行逻辑备份之前,先对整个数据库加上全局锁,一旦加了全局锁之后,其他的DDL、DML全部都处于阻塞状态,但是可以执行DQL语句,也就是处于只读状态,而数据备份就是查询操作。那么数据在进行逻辑备份的过程中,数据库中的数据就是不会发生变化的,这样就保证了数据的一致性和完整性。

语法

1). 加全局锁

flush tables with read lock ;

2). 数据备份

mysqldump -uroot –p1234 itcast > itcast.sql

3). 释放锁

unlock tables ;

特点

数据库中加全局锁,是一个比较重的操作,存在以下问题:

  • 如果在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆。
  • 如果在从库上备份,那么在备份期间从库不能执行主库同步过来的二进制日志(binlog),会导致主从延迟。

在InnoDB引擎中,我们可以在备份时加上参数 --single-transaction 参数来完成不加锁的一致性数据备份。

mysqldump --single-transaction -uroot –p123456 itcast > itcast.sql

–single-transaction 参数实现不加锁的一致性数据备份的原理如下:

  1. 创建一致性读取的视图: 当使用 --single-transaction 参数时,在备份开始之前,首先会在数据库中启动一个事务,并在这个事务中创建一个一致性读取的视图。这个视图会记录事务开始时刻数据库中的所有数据状态。
  2. 使用一致性视图进行备份: 一旦一致性读取的视图创建完成,备份工具(比如 mysqldump)将使用这个视图来进行备份操作。这意味着备份工具在整个备份过程中都会使用事务开始时刻创建的一致性视图,而不会受到其他事务对数据的修改影响。
  3. 持续读取: 在备份期间,其他事务对数据的修改不会影响备份操作。因为备份工具使用的是一个一致性的数据视图,所以即使其他事务在备份期间对数据进行了修改,这些修改也不会反映在备份数据中,确保了备份数据的一致性。
  4. 提交事务: 当备份完成后,可以选择提交或回滚之前启动的事务。如果提交事务,那么事务中对数据的读取操作就会生效;如果回滚事务,则会撤销这个事务中的所有操作,回到事务开始时刻的数据状态。

通过上述步骤,使用 --single-transaction 参数能够在不加锁的情况下完成一致性的数据备份。这样的备份方式对于大型数据库系统来说非常重要,因为它可以避免备份过程中对数据库的写操作造成的阻塞,同时保证备份数据的一致性。

表级锁

介绍

表级锁,每次操作锁住整张表。锁定粒度大,发生锁冲突的概率最高,并发度最低。应用在MyISAM、InnoDB、BDB等存储引擎中。

对于表级锁,主要分为以下三类:

  • 表锁
  • 元数据锁(meta data lock,MDL)
  • 意向锁

表锁

对于表锁,分为两类:

  • 表共享读锁(read lock)
  • 表独占写锁(write lock)

语法:

  • 加锁:lock tables 表名… read/write。
  • 释放锁:unlock tables / 客户端断开连接 。

特点:

A. 读锁

在这里插入图片描述

左侧为客户端一,对指定表加了读锁,不会影响右侧客户端二的读,但是会阻塞右侧客户端的写。

测试:

在这里插入图片描述

B. 写锁

在这里插入图片描述

左侧为客户端一,对指定表加了写锁,会阻塞右侧客户端的读和写。

测试:

在这里插入图片描述

结论: 读锁不会阻塞其他客户端的读,但是会阻塞写。写锁既会阻塞其他客户端的读,又会阻塞其他客户端的写。

元数据锁

meta data lock , 元数据锁,简写MDL。

MDL加锁过程是系统自动控制,无需显式使用,在访问一张表的时候会自动加上。MDL锁主要作用是维护表元数据的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。为了避免DML与DDL冲突,保证读写的正确性。

这里的元数据,大家可以简单理解为就是一张表的表结构。 也就是说,某一张表涉及到未提交的事务时,是不能够修改这张表的表结构的。

在MySQL5.5中引入了MDL,当对一张表进行增删改查的时候,加MDL读锁(共享);当对表结构进行变更操作的时候,加MDL写锁(排他)。

常见的SQL操作时,所添加的元数据锁:

对应SQL锁类型说明
lock tables xxx read /writeSHARED_READ_ONLY /SHARED_NO_READ_WRITE
select 、select …lock in share modeSHARED_READ与SHARED_READ、SHARED_WRITE兼容,与EXCLUSIVE互斥
insert 、update、delete、select … for updateSHARED_WRITE与SHARED_READ、SHARED_WRITE兼容,与EXCLUSIVE互斥
alter table …EXCLUSIVE与其他的MDL都互斥

演示:

当执行SELECT、INSERT、UPDATE、DELETE等语句时,添加的是元数据共享锁(SHARED_READ /
SHARED_WRITE),之间是兼容的。

在这里插入图片描述

当执行SELECT语句时,添加的是元数据共享锁(SHARED_READ),会阻塞元数据排他锁(EXCLUSIVE),之间是互斥的。

在这里插入图片描述

我们可以通过下面的SQL,来查看数据库中的元数据锁的情况:

select object_type,object_schema,object_name,lock_type,lock_duration from performance_schema.metadata_locks ;

我们在操作过程中,可以通过上述的SQL语句,来查看元数据锁的加锁情况。

在这里插入图片描述

意向锁

1). 介绍

为了避免DML在执行时,加的行锁与表锁的冲突,在InnoDB中引入了意向锁,使得表锁不用检查每行数据是否加锁,使用意向锁来减少表锁的检查。

假如没有意向锁,客户端一对表加了行锁后,客户端二如何给表加表锁呢,来通过示意图简单分析一下:

首先客户端一,开启一个事务,然后执行DML操作,在执行DML语句时,会对涉及到的行加行锁。

在这里插入图片描述

当客户端二,想对这张表加表锁时,会检查当前表是否有对应的行锁,如果没有,则添加表锁,此时就会从第一行数据,检查到最后一行数据,效率较低。

在这里插入图片描述

有了意向锁之后 :

客户端一,在执行DML操作时,会对涉及的行加行锁,同时也会对该表加上意向锁。

在这里插入图片描述

而其他客户端,在对这张表加表锁的时候,会根据该表上所加的意向锁来判定是否可以成功加表锁,而不用逐行判断行锁情况了。

在这里插入图片描述

2). 分类

  • 意向共享锁(IS): 由语句select … lock in share mode添加 。 与 表锁共享锁(read)兼容,与表锁排他锁(write)互斥。
  • 意向排他锁(IX): 由insert、update、delete、select…for update添加 。与表锁共享锁(read)及排他锁(write)都互斥,意向锁之间不会互斥。

一旦事务提交了,意向共享锁、意向排他锁,都会自动释放。

可以通过以下SQL,查看意向锁及行锁的加锁情况:

select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from
performance_schema.data_locks;

演示:

A. 意向共享锁与表读锁是兼容的

在这里插入图片描述

B. 意向排他锁与表读锁、写锁都是互斥的

在这里插入图片描述

行级锁

介绍

行级锁,每次操作锁住对应的行数据。锁定粒度最小,发生锁冲突的概率最低,并发度最高。应用在InnoDB存储引擎中。

InnoDB的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的锁。对于行级锁,主要分为以下三类:

  • 行锁(Record Lock):锁定单个行记录的锁,防止其他事务对此行进行update和delete。在RC、RR隔离级别下都支持。

在这里插入图片描述

  • 间隙锁(Gap Lock):锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事务在这个间隙进行insert,产生幻读。在RR隔离级别下都支持。

在这里插入图片描述

  • 临键锁(Next-Key Lock):行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙Gap。在RR隔离级别下支持。

在这里插入图片描述

行锁

1). 介绍

InnoDB实现了以下两种类型的行锁:

  • 共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排它锁。
  • 排他锁(X):允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他锁。

两种行锁的兼容情况如下

在这里插入图片描述

常见的SQL语句,在执行时,所加的行锁如下:

SQL行锁类型说明
INSERT …排他锁自动加锁
UPDATE …排他锁自动加锁
DELETE …排他锁自动加锁
SELECT(正常)不加任何锁
SELECT … LOCK IN SHARE MODE共享锁需要手动在SELECT之后加LOCK IN SHARE MODE
SELECT … FOR UPDATE排他锁需要手动在SELECT之后加FOR UPDATE

2). 演示

默认情况下,InnoDB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 next-key 锁进行搜索和索引扫描,以防止幻读。

  • 针对唯一索引进行检索时,对已存在的记录进行等值匹配时,将会自动优化为行锁。
  • InnoDB的行锁是针对于索引加的锁,不通过索引条件检索数据,那么InnoDB将对表中的所有记录加锁,此时 就会升级为表锁。

可以通过以下SQL,查看意向锁及行锁的加锁情况:

select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from
performance_schema.data_locks;

示例演示

数据准备:

CREATE TABLE `stu` (
    `id` int NOT NULL PRIMARY KEY AUTO_INCREMENT,
    `name` varchar(255) DEFAULT NULL,
    `age` int NOT NULL
) ENGINE = InnoDB CHARACTER SET = utf8mb4;

INSERT INTO `stu` VALUES (1, 'tom', 1);
INSERT INTO `stu` VALUES (3, 'cat', 3);
INSERT INTO `stu` VALUES (8, 'rose', 8);
INSERT INTO `stu` VALUES (11, 'jetty', 11);
INSERT INTO `stu` VALUES (19, 'lily', 19);
INSERT INTO `stu` VALUES (25, 'luci', 25);

演示行锁的时候,我们就通过上面这张表来演示一下。

A. 普通的select语句,执行时,不会加锁。

在这里插入图片描述

B. select…lock in share mode,加共享锁,共享锁与共享锁之间兼容。

在这里插入图片描述

共享锁与排他锁之间互斥。

在这里插入图片描述

客户端一获取的是id为1这行的共享锁,客户端二是可以获取id为3这行的排它锁的,因为不是同一行数据。 而如果客户端二想获取id为1这行的排他锁,会处于阻塞状态,以为共享锁与排他锁之间互斥。

C. 排它锁与排他锁之间互斥

在这里插入图片描述

当客户端一,执行update语句,会为id为1的记录加排他锁; 客户端二,如果也执行update语句更新id为1的数据,也要为id为1的数据加排他锁,但是客户端二会处于阻塞状态,因为排他锁之间是互斥的。 直到客户端一,把事务提交了,才会把这一行的行锁释放,此时客户端二,解除阻塞。

D. 无索引行锁升级为表锁

stu表中数据如下:

在这里插入图片描述

我们在两个客户端中执行如下操作:

在这里插入图片描述

在客户端一中,开启事务,并执行update语句,更新name为Lily的数据,也就是id为19的记录 。然后在客户端二中更新id为3的记录,却不能直接执行,会处于阻塞状态,为什么呢?

原因就是因为此时,客户端一,根据name字段进行更新时,name字段是没有索引的,如果没有索引,此时行锁会升级为表锁(因为行锁是对索引项加的锁,而name没有索引)。

接下来,我们再针对name字段建立索引,索引建立之后,再次做一个测试:

在这里插入图片描述

此时我们可以看到,客户端一,开启事务,然后依然是根据name进行更新。而客户端二,在更新id为3的数据时,更新成功,并未进入阻塞状态。 这样就说明,我们根据索引字段进行更新操作,就可以避免行锁升级为表锁的情况。

间隙锁&临键锁

默认情况下,InnoDB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 next-key 锁进行搜索和索引扫描,以防止幻读。

  • 索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁 。
  • 索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock 退化为间隙锁。
  • 索引上的范围查询(唯一索引)–会访问到不满足条件的第一个值为止。

注意:间隙锁唯一目的是防止其他事务插入间隙。间隙锁可以共存,一个事务采用的间隙锁不会阻止另一个事务在同一间隙上采用间隙锁。

示例演示

A. 索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁

在这里插入图片描述

B. 索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key
lock 退化为间隙锁。

介绍分析一下:

我们知道InnoDB的B+树索引,叶子节点是有序的双向链表。 假如,我们要根据这个二级索引查询值为18的数据,并加上共享锁,我们是只锁定18这一行就可以了吗? 并不是,因为是非唯一索引,这个结构中可能有多个18的存在,所以,在加锁时会继续往后找,找到一个不满足条件的值(当前案例中也就是29)。此时会对18加临键锁,并对29之前的间隙加锁。

在这里插入图片描述

C. 索引上的范围查询(唯一索引)–会访问到不满足条件的第一个值为止。

在这里插入图片描述

查询的条件为id>=19,并添加共享锁。 此时我们可以根据数据库表中现有的数据,将数据分为三个部分:

[19]

(19,25]

(25,+∞]

所以数据库数据在加锁是,就是将19加了行锁,25的临键锁(包含25及25之前的间隙),正无穷的临键锁(正无穷及之前的间隙)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/261802.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

闫式Dp分析法(一种求解动态规划问题的思路)

最近一直跟着Acwing学习动态规划问题的求解思想&#xff0c;感觉晦涩的算法问题一旦经过闫式Dp分析法的剖析&#xff0c;瞬时迎刃而解&#xff0c;故今天我觉得很有必要再次分享一下闫式Dp分析法&#xff08;在此默认你对DP问题有了一定的了解&#xff09;。 闫式Dp分析法 闫式…

前端问题记录

jenkins安装vue依赖报错 jenkins 安装依赖&#xff0c;报错cannot find module ‘/root/.jenkins/workspace/项目路径/node_modules/xxxx’&#xff0c;如图上 解决&#xff1a;执行 npm install vue/cli-service --unsafe-perm&#xff0c;再执行npm i

你以为出现NoClassDefFoundError错误会是什么原因?

你以为出现NoClassDefFoundError错误会是什么原因&#xff1f; 1、概述2、事情经过3、总结 1、概述 大家好&#xff0c;我是欧阳方超&#xff0c;可以关注我的公众号“欧阳方超”&#xff0c;后续内容将在公众号首发。 同样的错误&#xff0c;非一样的解决方式。NoClassDefFou…

【sgDragUploadFolder】自定义组件:自定义拖拽文件夹上传组件,支持上传单个或多个文件/文件夹,右下角上传托盘出现(后续更新...)

特性&#xff1a; 支持在拖拽上传单个文件、多个文件、单个文件夹、多个文件夹可自定义headers可自定义过滤上传格式可自定义上传API接口支持显示/隐藏右下角上传队列托盘 sgDragUploadFolder源码 <template><div :class"$options.name" :dragenter"i…

使用Gitee中的CI/CD来完成代码的自动部署与发布(使用内网穿透把本地电脑当作服务器使用)

&#x1f4da;目录 &#x1f4da;简介:⚙️ 所需工具&#xff1a;&#x1f4a8;内网穿透配置&#x1f4ad;工具介绍✨命令安装&#x1f38a;配置Cpolar&#x1f573;️关闭防火墙&#x1f95b;防火墙端口放行规则&#xff08;关闭防火墙可以忽略&#xff09;&#x1f36c;小章总…

WCF服务总结

前言 WCF,全称为Windows Communication Foundation,是一种用于构建分布式应用程序的微软框架。它提供了一种统一的编程模型,用于构建服务导向的应用程序,这些应用程序可以在本地或远程计算机上运行。WCF 支持多种传输协议和编码格式,并提供了高级安全性、可靠性和事务处理…

微软在 Perforce Helix 核心服务器中发现4个安全漏洞

微软分析师在对Perforce Helix的游戏开发工作室产品进行安全审查时&#xff0c;发现为游戏、政府、军事和技术等部门广泛使用的源代码管理平台 Perforce Helix Core Server 存在四大漏洞&#xff0c;并于今年 8 月底向 Perforce 报告了这些漏洞&#xff0c;其中一个漏洞被评为严…

路径规划之RRT *算法

系列文章目录 路径规划之Dijkstra算法 路径规划之Best-First Search算法 路径规划之A *算法 路径规划之D *算法 路径规划之PRM算法 路径规划之RRT算法 路径规划之RRT *算法 路径规划之RRT*算法 系列文章目录前言一、RRT算法1.起源2.改进2.1 重新选择父节点2.2 重新布线 3.对比…

day44代码训练|动态规划part06

完全背包和01背包问题唯一不同的地方就是&#xff0c;每种物品有无限件。 1. dp数组的含义 dp[i][j] 0-i物品&#xff0c;重量为j的容量时&#xff0c;最大的价值 2. 递推公式 dp[i][j] max(dp[i-1][j],dp[i][j-weight[i]]value[i]); 两种状态&#xff0c;不用物品i的话&…

【数论】质数

试除法判断质数 分解质因数 一个数可以被分解为质因数乘积 n &#xff0c;其中的pi都是质因数 那么怎么求pi及其指数呢&#xff1f; 我们将i一直从2~n/i循环&#xff0c;如果 n%i0&#xff0c;那么i一定是质因数&#xff0c;并且用一个while循环将n除以i&#xff0c;一直到…

蛇梯棋[中等]

一、题目 给你一个大小为n x n的整数矩阵board&#xff0c;方格按从1到n2编号&#xff0c;编号遵循 转行交替方式 &#xff0c;从左下角开始 &#xff08;即&#xff0c;从board[n - 1][0]开始&#xff09;每一行交替方向。玩家从棋盘上的方格1&#xff08;总是在最后一行、第…

礼品企业网站搭建的作用是什么

礼品一般分为企业定制礼品和零售现成礼品&#xff0c;二者都有很强的市场需求度。同时对礼品企业而言&#xff0c;一般主要以批发为主&#xff0c;客户也主要是零售商或企业。 1、拓客难 不同于零售&#xff0c;即使没有引流&#xff0c;入驻商场或街边小摊也总会有自然客户。…

【C++篇】Vector容器 Vector嵌套容器

文章目录 &#x1f354;简述vector&#x1f384;vector存放内置数据类型⭐创建一个vector容器⭐向容器里面插入数据⭐通过迭代器访问容器里面的数据⭐遍历&#x1f388;第一种遍历方式&#x1f388;第二种遍历方式&#x1f388;第三种遍历方式 &#x1f384;vector存放自定义数…

揭秘 Go 中 Goroutines 轻量级并发

理解 Goroutines、它们的效率以及同步挑战 并发是现代软件开发的一个基本概念&#xff0c;使程序能够同时执行多个任务。在 Go 编程领域&#xff0c;理解 Goroutines 是至关重要的。本文将全面概述 Goroutines&#xff0c;它们的轻量级特性&#xff0c;如何使用 go 关键字创建…

FPGA模块——以太网(1)MDIO读写

FPGA模块——以太网MDIO读写 MDIO接口介绍MDIO接口代码&#xff08;1&#xff09;MDIO接口驱动代码&#xff08;2&#xff09;使用MDIO驱动的代码 MDIO接口介绍 MDIO是串行管理接口。MAC 和 PHY 芯片有一个配置接口&#xff0c;即 MDIO 接口&#xff0c;可以配置 PHY 芯片的工…

Ubuntu 常用命令之 ifconfig 命令用法介绍

&#x1f4d1;Linux/Ubuntu 常用命令归类整理 ifconfig 是一个用于配置和显示 Linux 内核中网络接口的系统管理命令。它用于配置&#xff0c;管理和查询 TCP/IP 网络接口参数。 ifconfig 命令的参数有很多&#xff0c;以下是一些常见的参数 up&#xff1a;激活指定的网络接口…

Java学习系列(五)

1.继承 继承是java面向对象编程技术的一块基石&#xff0c;因为它允许创建分等级层次的类。 继承就是子类继承父类的特征和行为&#xff0c;使得子类对象&#xff08;实例&#xff09;具有父类的实例域和方法&#xff0c;或子类从父类继承方法&#xff0c;使得子类具有父类相…

实现单链表的基本操作(力扣、牛客刷题的基础笔试题常客)

本节来学习单链表的实现。在链表的刷题中&#xff0c;单链表占主导地位&#xff0c;很多oj题都在在单链表的背景下进行&#xff1b;而且很多链表的面试题都是以单链表为背景命题。所以&#xff0c;学好单链表的基本操作很重要 目录 一.介绍单链表 1.链表及单链表 2.定义一个…

生活中的物理2——人类迷惑行为(用笔扎手)

1实验 材料 笔、手 实验 1、先用手轻轻碰一下笔尖&#xff08;未成年人须家长监护&#xff09; 2、再用另一只手碰碰笔尾 你发现了什么&#xff1f;&#xff1f; 2发现 你会发现碰笔尖的手明显比碰笔尾的手更痛 你想想为什么 3原理 压强f/s 笔尖的面积明显比笔尾的小 …

C#文件操作(二)

一、前言 文章的续作前文是&#xff1a; C#文件操作&#xff08;一&#xff09;-CSDN博客https://blog.csdn.net/qq_71897293/article/details/135117922?spm1001.2014.3001.5501 二、流 流是序列化设备的抽象表示序列化设备可以线性方式储存数据并可按照同样的方式访问一次…