智能优化算法应用:基于蜜獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蜜獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于蜜獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.蜜獾算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用蜜獾算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.蜜獾算法

蜜獾算法原理请参考:https://blog.csdn.net/u011835903/article/details/122236413
蜜獾算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


蜜獾算法参数如下:

%% 设定蜜獾优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明蜜獾算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/259260.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2023-12-20 二叉搜索树的最近公共祖先和二叉搜索树中的插入操作和删除二叉搜索树中的节点

235. 二叉搜索树的最近公共祖先 思想:和二叉树的公共最近祖先节点的思路基本一致的!就是不用从下往上遍历处理!可以利用的二叉搜索树的特点从上往下处理了!而且最近公共节点肯定是第一个出现在【q,p】这个区间的内的&…

【已解决】vs2015操作创建声明定义由于以下原因无法完成

本博文解决这样的一个问题,就是vs2015下用qt,在快速创建槽函数时给笔者报了个错误,错误的完整说法是这样子的”操作创建声明/定义“由于下列原因无法完成,所选的文本不包含任何函数签名。第一次遇到这种花里胡哨的问题&#xff0c…

【数据结构】并查集的简单实现,合并,查找(C++)

文章目录 前言举例: 一、1.构造函数2.查找元素属于哪个集合FindRoot3.将两个集合归并成一个集合Union4.查找集合数量SetCount 二、源码 前言 需要将n个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合,然后按一定的规…

算法-滑动窗口类型

6666 滑动窗口 1、大小为K的最大和子数组 给定一个数组,找出该数组中所有大小为“K”的连续子数组的平均值。 让我们用实际输入来理解这个问题: Array: [1, 3, 2, 6, -1, 4, 1, 8, 2], K51、对于前5个数字(索引0-4的子数组),平均值为:(1 3 2 6−…

贝蒂快扫雷~(C语言)

✨✨欢迎大家来到贝蒂大讲堂✨✨ ​​​​🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:贝蒂的游戏 贝蒂的主页:Betty‘s blog 引言: 扫雷相信大家小时候到玩过吧,那…

Gin之GORM多表关联查询(多对多;自定义预加载SQL)

数据库三个,如下: 注意:配置中间表的时候,表设计层面最好和配置的其他两张表契合,例如其他两张表为fate内的master和slave;要整合其对应关系的话,设计中间表的结构为master_id和slave_id最好(不然会涉及重写外键的操作) 重写外键(介绍) 对于 many2many 关系,连接表…

DBdoctor,致力于解决数据库的一切性能问题

17(一起),这是我的幸运数字,恰巧今年8月17日在DTCC大会上我们全网首次发布DBdoctor,今天同样是17日,在全网首发整四个月后我们发布重磅大版本V3.1。值此重大更新之际,想与各有识之士深度聊一下这款产品,以及…

【LeetCode刷题】--244.最短单词距离II

244.最短单词距离II 方法&#xff1a;哈希表双指针 class WordDistance {HashMap<String,List<Integer>> map new HashMap<>();public WordDistance(String[] wordsDict) {int len wordsDict.length;for(int i 0;i< len;i){String word wordsDict[i];…

Kafka基本原理及使用

目录 基本概念 单机版 环境准备 基本命令使用 集群版 消息模型 成员组成 1. Topic&#xff08;主题&#xff09;&#xff1a; 2. Partition&#xff08;分区&#xff09;&#xff1a; 3. Producer&#xff08;生产者&#xff09;&#xff1a; 4. Consumer&#xff08;…

2023年12月20日学习总结

今日to do list&#xff1a; 学习kaggle中store sales中的dart forcasting&#x1f3af; 大概搜集一个声纹识别的报告&#xff08;老师给的新项目&#x1f62d;&#xff09; 学习时不刷手机 okkkkkkkkkkkkkk 开始&#x1f44d; 1. 时间序列预测- a complete guide 总结一下这…

Vim:文本编辑的强大利器

Vim&#xff1a;文本编辑的强大利器 概述1. 工作模式1.1 普通模式1.2 插入模式1.3 可视模式 2. 代码示例2.1 移动光标2.2 复制和粘贴2.3 查找和替换 3. 应用场景结语 概述 Vim&#xff08;Vi Improved&#xff09;是一款强大的文本编辑器&#xff0c;广泛应用于Linux和Unix系统…

架构设计到底是什么?

文章目录 架构设计有哪些内容&#xff1f;架构原理与技术认知分布式技术原理与设计中间件常用组件的原理和设计问题数据库原理与设计问题分布式缓存原理与设计问题互联网高性能高可用设计问题 技术认知架构分析问题分析能力边界 架构设计&#xff0c;是中高级研发工程师逃不开的…

LabVIEW开发振动数据分析系统

LabVIEW开发振动数据分析系统 自动测试系统基于LabVIEW平台设计&#xff0c;采用了多种高级硬件设备。系统的硬件组成包括PCB振动加速度传感器&#xff0c;这是一种集成了传统压电加速度传感器和电荷放大器的先进设备&#xff0c;能够直接与采集仪器连接。此外&#xff0c;系统…

教师的职业素养有哪些

教师职业素养的重要性不言而喻。一个优秀的教师不仅需要具备专业知识&#xff0c;还需要具备一些基本的职业素养。 具备高尚的职业道德。作为教育工作者&#xff0c;教师应该以身作则&#xff0c;树立良好的榜样。他们应该尊重学生、关心学生、热爱学生&#xff0c;以自己的言行…

15 使用v-model绑定单选框

概述 使用v-model绑定单选框也比较常见&#xff0c;比如性别&#xff0c;要么是男&#xff0c;要么是女。比如单选题&#xff0c;给出多个选择&#xff0c;但是只能选择其中的一个。 在本节课中&#xff0c;我们演示一下这两种常见的用法。 基本用法 我们创建src/component…

测试自动化平台 | 测试开发工程师的进阶之路

一、测试工程师的现状 很多测试小伙伴在工作中有时会比较迷茫&#xff0c;不知该怎样突破瓶颈&#xff0c;更好的发展。 那么测试人员究竟该如何打破瓶颈继续向上提升呢&#xff1f;如果你苦于不知所措&#xff0c;又满怀斗志向上的话&#xff0c;不妨一起聊聊。测试职业发展…

(PC+WAP)装修设计公司网站模板 家装公司网站源码下载

(PCWAP)装修设计公司网站模板 家装公司网站源码下载 PbootCMS内核开发的网站模板&#xff0c;该模板适用于装修设计、家装公司类等企业&#xff0c;当然其他行业也可以做&#xff0c;只需要把文字图片换成其他行业的即可&#xff1b; PCWAP&#xff0c;同一个后台&#xff0c…

暴雨AI服务器:推动大模型算力底座发展

语言大模型作为人工智能领域的重要分支&#xff0c;其强大的自然语言处理能力和模仿人类的对话决策能力&#xff0c;正逐渐成为人们的关注焦点。近日&#xff0c;据央视新闻报道&#xff0c;工业和信息化部赛迪研究院数据显示&#xff0c;今年我国语言大模型市场规模实现较快提…

D : B DS二叉排序树_树中第k小的元素

Description 给定一个二叉排序树和一个整数k&#xff0c;要求输出树中第k个最小元素(k从1开始计数)。 Input 第一行输入t&#xff0c;表示有t个测试样例。 第二行起&#xff0c;首先输入n&#xff0c;接着输入n个整数表示一个二叉排序树&#xff0c;接着输入k。 以此类推共…

分段函数1_分支结构 C语言xdoj112

题目描述: 编写程序计算分段函数f(x)的值。 输入格式&#xff1a;输入实数x的值 输出格式&#xff1a;输出f(x)的值&#xff0c;结果保留两位小数。 示例&#xff1a; 输入&#xff1a;4 输出&#xff1a;2.00 #include <stdio.h> #include <math.h>//分段函数1_分…