a*算法代码 python,python isalpha方法

大家好,小编来为大家解答以下问题,a*算法代码 python,python isalpha方法,今天让我们一起来看看吧!

更新:

GitHub - pierrepaleo/sift_pyocl: An implementation of SIFT on GPU with OpenCL

python-siftgpu


特征点:

Add ASIFT to OpenCV · Issue #4399 · opencv/opencv · GitHub

https://bitbucket.org/xa4a/diploma/src/1046293ccb8c/prog/features/

main | Mariano Rodríguez

https://rdguez-mariano.github.io/pages/hyperdeors

research-papers | Mariano Rodríguez

GitHub - rdguez-mariano/fast_imas_IPOL: Fast Image Matching by Affine Simulation. Source code for the IPOL demo.

GitHub - rdguez-mariano/imas_analytics: A compilation of C++ and MATLAB functions that were used to apply, analyse and visualise IMAS methods based on available state-of-the-art SIIM methods.

https://github.com/opencv/opencv/blob/master/samples/python/asift.py

http://www.cmap.polytechnique.fr/~yu/research/ASIFT/demo.html

OpenCV ASift C++ Implementation – Matt Sheckells

Latest Image Processing Techology – Image processing, openCV, SIFT, SURF, logo identification, python

IPOL Journal · ASIFT: An Algorithm for Fully Affine Invariant Comparison

http://www.pudn.com/Download/item/id/3316303.html

Affine invariant feature-based image matching

https://www.cnblogs.com/dwdxdy/p/3580038.html

OpenCV-Python实践之ASIFT框架仿射特征匹配算法_asift匹配例图-CSDN博客

GPU-ASIFT - CODE: A Wide-Baseline Feature Matcher

https://github.com/opencv/opencv/blob/master/samples/python/asift.py

'''
Affine invariant feature-based image matching sample.
This sample is similar to find_obj.py, but uses the affine transformation
space sampling technique, called ASIFT [1]. While the original implementation
is based on SIFT, you can try to use SURF or ORB detectors instead. Homography RANSAC
is used to reject outliers. Threading is used for faster affine sampling.
[1] http://www.ipol.im/pub/algo/my_affine_sift/
USAGE
  asift.py [--feature=<sift|surf|orb|brisk>[-flann]] [ <image1> <image2> ]
  --feature  - Feature to use. Can be sift, surf, orb or brisk. Append '-flann'
               to feature name to use Flann-based matcher instead bruteforce.
  Press left mouse button on a feature point to see its matching point.
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv

# built-in modules
import itertools as it
from multiprocessing.pool import ThreadPool

# local modules
from common import Timer
from find_obj import init_feature, filter_matches, explore_match


def affine_skew(tilt, phi, img, mask=None):
    '''
    affine_skew(tilt, phi, img, mask=None) -> skew_img, skew_mask, Ai
    Ai - is an affine transform matrix from skew_img to img
    '''
    h, w = img.shape[:2]
    if mask is None:
        mask = np.zeros((h, w), np.uint8)
        mask[:] = 255
    A = np.float32([[1, 0, 0], [0, 1, 0]])
    if phi != 0.0:
        phi = np.deg2rad(phi)
        s, c = np.sin(phi), np.cos(phi)
        A = np.float32([[c,-s], [ s, c]])
        corners = [[0, 0], [w, 0], [w, h], [0, h]]
        tcorners = np.int32( np.dot(corners, A.T) )
        x, y, w, h = cv.boundingRect(tcorners.reshape(1,-1,2))
        A = np.hstack([A, [[-x], [-y]]])
        img = cv.warpAffine(img, A, (w, h), flags=cv.INTER_LINEAR, borderMode=cv.BORDER_REPLICATE)
    if tilt != 1.0:
        s = 0.8*np.sqrt(tilt*tilt-1)
        img = cv.GaussianBlur(img, (0, 0), sigmaX=s, sigmaY=0.01)
        img = cv.resize(img, (0, 0), fx=1.0/tilt, fy=1.0, interpolation=cv.INTER_NEAREST)
        A[0] /= tilt
    if phi != 0.0 or tilt != 1.0:
        h, w = img.shape[:2]
        mask = cv.warpAffine(mask, A, (w, h), flags=cv.INTER_NEAREST)
    Ai = cv.invertAffineTransform(A)
    return img, mask, Ai


def affine_detect(detector, img, mask=None, pool=None):
    '''
    affine_detect(detector, img, mask=None, pool=None) -> keypoints, descrs
    Apply a set of affine transformations to the image, detect keypoints and
    reproject them into initial image coordinates.
    See http://www.ipol.im/pub/algo/my_affine_sift/ for the details.
    ThreadPool object may be passed to speedup the computation.
    '''
    params = [(1.0, 0.0)]
    for t in 2**(0.5*np.arange(1,6)):
        for phi in np.arange(0, 180, 72.0 / t):
            params.append((t, phi))

    def f(p):
        t, phi = p
        timg, tmask, Ai = affine_skew(t, phi, img)
        keypoints, descrs = detector.detectAndCompute(timg, tmask)
        for kp in keypoints:
            x, y = kp.pt
            kp.pt = tuple( np.dot(Ai, (x, y, 1)) )
        if descrs is None:
            descrs = []
        return keypoints, descrs

    keypoints, descrs = [], []
    if pool is None:
        ires = it.imap(f, params)
    else:
        ires = pool.imap(f, params)

    for i, (k, d) in enumerate(ires):
        print('affine sampling: %d / %d\r' % (i+1, len(params)), end='')
        keypoints.extend(k)
        descrs.extend(d)

    print()
    return keypoints, np.array(descrs)



class LensDistortion(object):
    def __init__(self, coeffs={}):
        # SAVED CALIBRATION RESULTS
        self._coeffs = coeffs
        # SAVED CALIBRATION SETTINGS
        self.opts = {}
        self.mapx, self.mapy = None, None
        self.newCameraMatrix = None

    def setCameraParams(self, fx, fy, cx, cy, k1, k2, k3, p1, p2):
        c = self._coeffs['cameraMatrix'] = np.zeros(shape=(3, 3))
        c[0, 0] = fx
        c[1, 1] = fy
        c[0, 2] = cx
        c[1, 2] = cy
        c[2, 2] = 1
        self._coeffs['distortionCoeffs'] = np.array([[k1, k2, p1, p2, k3]])

    def getUndistortRectifyMap(self, imgWidth, imgHeight):

        if self.mapx is not None and self.mapx.shape == (imgHeight, imgWidth):
            return self.mapx, self.mapy

        cam = self._coeffs['cameraMatrix']
        d = self._coeffs['distortionCoeffs']

        (newCameraMatrix, self.roi) = cv.getOptimalNewCameraMatrix(cam,
                                                                    d, (imgWidth,
                                                                        imgHeight), 1,
                                                                    (imgWidth, imgHeight))
        self.newCameraMatrix = newCameraMatrix

        self.mapx, self.mapy = cv.initUndistortRectifyMap(cam,
                                                           d, None, newCameraMatrix,
                                                           (imgWidth, imgHeight), cv.CV_32FC1)
        return self.mapx, self.mapy

    def getDistortRectifyMap(self, sizex, sizey):
        posy, posx = np.mgrid[0:sizey, 0:sizex].astype(np.float32)
        mapx, mapy = self.getUndistortRectifyMap(sizex, sizey)
        dx = posx - mapx
        dy = posy - mapy
        posx += dx
        posy += dy
        return posx, posy

    def distortImage(self, image):
        '''
        opposite of 'correct'
        '''
        (imgHeight, imgWidth) = image.shape[:2]
        mapx, mapy = self.getDistortRectifyMap(imgWidth, imgHeight)
        return cv.remap(image, mapx, mapy, cv.INTER_LINEAR,
                         borderValue=(0, 0, 0))

def showme(dst, name):
    import matplotlib.pyplot as plt
    plt.figure()
    plt.title(name)
    plt.imshow(dst)
    plt.show()



def main():
    #    img1 = cv2.imread("./save_ply/1_IMG_Texture_8Bit.png", -1)
    import sys, getopt
    opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
    # opts = dict(opts)
    # feature_name = opts.get('--feature', 'brisk-flann')

    feature_name = 'sift'
    try:
        fn1, fn2 = args
    except:
        #fn1 = "./save_ply/1_IMG_Texture_8Bit.png"
        #fn2 = "./save_ply/7_IMG_coeffsTexture_8Bit.png"
        fn1 = "./save_ply/11_IMG_Texture_8Bit.png"
        fn2 = "./save_ply/22_IMG_Texture_8Bit.png"
        #fn1 = "./save_ply/img1.ppm"
        #fn2 = "./save_ply/img6.ppm"

    l = LensDistortion()
    img11 = cv.imread(fn1, cv.IMREAD_GRAYSCALE)
    img22 = cv.imread(fn2, cv.IMREAD_GRAYSCALE)
    showme(img11, "img1")
    showme(img22, "img2")
    l.setCameraParams(2269.16, 2268.4, 1065.54, 799.032, -0.121994, 0.154463, -0.0307676, 0.000367495, -0.000926385)
    #img1 = l.distortImage(img11)
    #img2 = l.distortImage(img22)
    img1 = img11
    img2 = img22
    showme(img1, "distimg1")
    showme(img2, "distimg2")

    x, y = img1.shape[0:2]
    #img1 = cv.resize(img1, (int(y / 2), int(x / 2)))
    #img2 = cv.resize(img2, (int(y / 2), int(x / 2)))
    #img1 = cv.imread(fn1, -1)
    #img2 = cv.imread(fn2, -1)
    #img1 = cv.cvtColor(img1, cv.COLOR_BGR2GRAY)
    #img1 = cv.cvtColor(img1, cv.COLOR_BGR2GRAY)
    # img1 = np.ones_like(img1_)
    # img2 = np.ones_like(img2_)
    # img1 = cv.resize(img1_,(500,800,3),img1)
    # img2 = cv.resize(img1_,(500,800,3),img2)
    detector, matcher = init_feature(feature_name)

    if img1 is None:
        print('Failed to load fn1:', fn1)
        sys.exit(1)

    if img2 is None:
        print('Failed to load fn2:', fn2)
        sys.exit(1)

    if detector is None:
        print('unknown feature:', feature_name)
        sys.exit(1)

    print('using', feature_name)

    pool=ThreadPool(processes = cv.getNumberOfCPUs())
    kp1, desc1 = affine_detect(detector, img1, pool=pool)
    kp2, desc2 = affine_detect(detector, img2, pool=pool)
    print('img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)))

    def match_and_draw(win):
        with Timer('matching'):
            raw_matches = matcher.knnMatch(desc1, trainDeors = desc2, k = 2) #2
        p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches)
        if len(p1) >= 4:
            H, status = cv.findHomography(p1, p2, cv.RANSAC, 20.0)
            print('%d / %d  inliers/matched' % (np.sum(status), len(status)))
            # do not draw outliers (there will be a lot of them)
            kp_pairs = [kpp for kpp, flag in zip(kp_pairs, status) if flag]
        else:
            H, status = None, None
            print('%d matches found, not enough for homography estimation' % len(p1))

        explore_match(win, img1, img2, kp_pairs, None, H, l.newCameraMatrix)


    match_and_draw('affine find_obj')
    cv.waitKey()
    print('Done')


if __name__ == '__main__':
    print(__doc__)
    main()
    cv.destroyAllWindows()
'''
Feature-based image matching sample.
Note, that you will need the https://github.com/opencv/opencv_contrib repo for SIFT and SURF
USAGE
  find_obj.py [--feature=<sift|surf|orb|akaze|brisk>[-flann]] [ <image1> <image2> ]
  --feature  - Feature to use. Can be sift, surf, orb or brisk. Append '-flann'
               to feature name to use Flann-based matcher instead bruteforce.
  Press left mouse button on a feature point to see its matching point.
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv

from common import anorm, getsize

FLANN_INDEX_KDTREE = 1  # bug: flann enums are missing
FLANN_INDEX_LSH    = 6


def init_feature(name):
    chunks = name.split('-')
    if chunks[0] == 'sift':
        detector = cv.xfeatures2d.SIFT_create()
        norm = cv.NORM_L2
    elif chunks[0] == 'surf':
        detector = cv.xfeatures2d.SURF_create(800)
        norm = cv.NORM_L2
    elif chunks[0] == 'orb':
        detector = cv.ORB_create(400)
        norm = cv.NORM_HAMMING
    elif chunks[0] == 'akaze':
        detector = cv.AKAZE_create()
        norm = cv.NORM_HAMMING
    elif chunks[0] == 'brisk':
        detector = cv.BRISK_create()
        norm = cv.NORM_HAMMING
    else:
        return None, None
    if 'flann' in chunks:
        if norm == cv.NORM_L2:
            flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        else:
            flann_params= dict(algorithm = FLANN_INDEX_LSH,
                               table_number = 6, # 12
                               key_size = 12,     # 20
                               multi_probe_level = 1) #2
        matcher = cv.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
    else:
        matcher = cv.BFMatcher(norm)
    return detector, matcher


def filter_matches(kp1, kp2, matches, ratio = 0.75):
    mkp1, mkp2 = [], []
    for m in matches:
        if len(m) == 2 and m[0].distance < m[1].distance * ratio:
            m = m[0]
            mkp1.append( kp1[m.queryIdx] )
            mkp2.append( kp2[m.trainIdx] )
    p1 = np.float32([kp.pt for kp in mkp1])
    p2 = np.float32([kp.pt for kp in mkp2])
    kp_pairs = zip(mkp1, mkp2)
    return p1, p2, list(kp_pairs)

def explore_match(win, img1, img2, kp_pairs, status = None, H = None, newCameraMatrix=None):
    h1, w1 = img1.shape[:2]
    h2, w2 = img2.shape[:2]
    vis = np.zeros((max(h1, h2), w1+w2), np.uint8)
    vis[:h1, :w1] = img1
    vis[:h2, w1:w1+w2] = img2
    vis = cv.cvtColor(vis, cv.COLOR_GRAY2BGR)

    if H is not None:
        corners = np.float32([[0, 0], [w1, 0], [w1, h1], [0, h1]])
        corners = np.int32( cv.perspectiveTransform(corners.reshape(1, -1, 2), H).reshape(-1, 2) + (w1, 0) )
        cv.polylines(vis, [corners], True, (255, 255, 255))

    if status is None:
        status = np.ones(len(kp_pairs), np.bool_)
    p1, p2 = [], []  # python 2 / python 3 change of zip unpacking
    newp1, newp2 = [], []
    for kpp in kp_pairs:
        p1.append(np.int32(kpp[0].pt))
        newp1.append(np.int32(kpp[0].pt))
        p2.append(np.int32(np.array(kpp[1].pt) + [w1, 0]))
        newp2.append(np.int32(np.array(kpp[1].pt)))


    '''
    (k1, k2, p1, p2[, k3[, k4, k5, k6[, s1, s2, s3, s4[, tx, ty]]]])
    (-0.121994, 0.154463, 0.000367495, -0.000926385[, -0.0307676[, 0, 0, 0[, 0, 0, 0, 0[, 0, 0]]]])
    '''
    #https://www.cnblogs.com/riddick/p/7811877.html
    #https://answers.opencv.org/question/189490/stereo-re-calibration-using-opencvs-findessentialmat-recoverpose/
    #https://answers.opencv.org/question/104134/translation-vector-upto-a-scale-factor-odometry/
    #https://dsp.stackexchange.com/questions/25971/how-are-the-scaling-parameters-included-extracted-from-an-essential-matrix
    intrinsics = [[2269.16, 0., 1065.54], [0., 2268.4, 799.032], [0., 0., 1.]]
    K0 = np.array(intrinsics)
    #newCameraMatrix = np.array(newCameraMatrix)
    newCameraMatrix = K0
    import cv2
    retval, mask = cv2.findEssentialMat(np.array(newp1), np.array(newp2), newCameraMatrix, method=cv2.RANSAC, threshold=20)
    NN, R, t, _ = cv2.recoverPose(retval, np.array(newp1), np.array(newp2), newCameraMatrix, mask=mask)
    print(R)
    print(t)


    dep1 = cv2.imread("./save_ply/11_IMG_DepthMap.tif", -1)
    dep2 = cv2.imread("./save_ply/22_IMG_DepthMap.tif", -1)
    trp1 = []
    trp2 = []
    for key, ((x1, y1), (x2, y2)) in enumerate(zip(newp1, newp2)):
        left_d = dep1[y1][x1]
        left_z = float(left_d) / newCameraMatrix[2][2]
        left_x = (x1 - newCameraMatrix[0][2]) * left_z / newCameraMatrix[0][0]
        left_y = (y1 - newCameraMatrix[1][2]) * left_z / newCameraMatrix[1][1]
        points1 = np.array([left_x, left_y, left_z])
        flag1 = (np.sum(abs(points1))<0.001)
        right_d = dep2[y2][x2]
        right_z = float(right_d) / newCameraMatrix[2][2]
        right_x = (x2 - newCameraMatrix[0][2]) * right_z / newCameraMatrix[0][0]
        right_y = (y2 - newCameraMatrix[1][2]) * right_z / newCameraMatrix[1][1]
        points2 = np.array([right_x, right_y, right_z])
        flag2 = (np.sum(abs(points2)) < 0.001)

        if mask[key]==True and flag1==False and flag2==False:
        #if flag1 == False and flag2 == False:
            trp1.append(points1)
            trp2.append(points2)
            a = 1


    def best_fit_transform(A, B):
        '''
        Calculates the least-squares best-fit transform that maps corresponding points A to B in m spatial dimensions
        Input:
          A: Nxm numpy array of corresponding points
          B: Nxm numpy array of corresponding points
        Returns:
          T: (m+1)x(m+1) homogeneous transformation matrix that maps A on to B
          R: mxm rotation matrix
          t: mx1 translation vector
        '''
        from sklearn.neighbors import NearestNeighbors
        assert A.shape == B.shape

        # get number of dimensions
        m = A.shape[1]

        # translate points to their centroids
        centroid_A = np.mean(A, axis=0)
        centroid_B = np.mean(B, axis=0)
        AA = A - centroid_A
        BB = B - centroid_B

        # rotation matrix
        H = np.dot(AA.T, BB)
        U, S, Vt = np.linalg.svd(H)
        R = np.dot(Vt.T, U.T)

        # special reflection case
        if np.linalg.det(R) < 0:
            Vt[m - 1, :] *= -1
            R = np.dot(Vt.T, U.T)

        # translation
        t = centroid_B.T - np.dot(R, centroid_A.T)

        # homogeneous transformation
        T = np.identity(m + 1)
        T[:m, :m] = R
        T[:m, m] = t
        return T, R, t

    newtrp1 = np.array(trp1)
    newtrp2 = np.array(trp2)

    T, R, t = best_fit_transform(newtrp1, newtrp2)
    print(R.astype(np.float16))
    print(t.astype(np.float16))

    green = (0, 255, 0)
    red = (0, 0, 255)
    kp_color = (51, 103, 236)
    for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
        if inlier:
            col = green
            cv.circle(vis, (x1, y1), 2, col, -1)
            cv.circle(vis, (x2, y2), 2, col, -1)
        else:
            col = red
            r = 2
            thickness = 3
            cv.line(vis, (x1-r, y1-r), (x1+r, y1+r), col, thickness)
            cv.line(vis, (x1-r, y1+r), (x1+r, y1-r), col, thickness)
            cv.line(vis, (x2-r, y2-r), (x2+r, y2+r), col, thickness)
            cv.line(vis, (x2-r, y2+r), (x2+r, y2-r), col, thickness)
    vis0 = vis.copy()
    for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
        if inlier:
            cv.line(vis, (x1, y1), (x2, y2), green)

    cv.imshow(win, vis)
    cv.imwrite("./save_ply/22.png", vis)

    def onmouse(event, x, y, flags, param):
        cur_vis = vis
        if flags & cv.EVENT_FLAG_LBUTTON:
            cur_vis = vis0.copy()
            r = 8
            m = (anorm(np.array(p1) - (x, y)) < r) | (anorm(np.array(p2) - (x, y)) < r)
            idxs = np.where(m)[0]

            kp1s, kp2s = [], []
            for i in idxs:
                (x1, y1), (x2, y2) = p1[i], p2[i]
                col = (red, green)[status[i][0]]
                cv.line(cur_vis, (x1, y1), (x2, y2), col)
                kp1, kp2 = kp_pairs[i]
                kp1s.append(kp1)
                kp2s.append(kp2)
            cur_vis = cv.drawKeypoints(cur_vis, kp1s, None, flags=4, color=kp_color)
            cur_vis[:,w1:] = cv.drawKeypoints(cur_vis[:,w1:], kp2s, None, flags=4, color=kp_color)

        cv.imshow(win, cur_vis)
    cv.setMouseCallback(win, onmouse)
    import matplotlib.pyplot as plt
    def showimg(dst, name):
        plt.figure()
        plt.title(name)
        plt.imshow(dst)
        plt.show()
    showimg(vis, "result")
    return vis


def main():
    import sys, getopt
    opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
    opts = dict(opts)
    feature_name = opts.get('--feature', 'brisk')
    try:
        fn1, fn2 = args
    except:
        fn1 = 'box.png'
        fn2 = 'box_in_scene.png'

    img1 = cv.imread(cv.samples.findFile(fn1), cv.IMREAD_GRAYSCALE)
    img2 = cv.imread(cv.samples.findFile(fn2), cv.IMREAD_GRAYSCALE)
    detector, matcher = init_feature(feature_name)

    if img1 is None:
        print('Failed to load fn1:', fn1)
        sys.exit(1)

    if img2 is None:
        print('Failed to load fn2:', fn2)
        sys.exit(1)

    if detector is None:
        print('unknown feature:', feature_name)
        sys.exit(1)

    print('using', feature_name)

    kp1, desc1 = detector.detectAndCompute(img1, None)
    kp2, desc2 = detector.detectAndCompute(img2, None)
    print('img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)))

    def match_and_draw(win):
        print('matching...')
        raw_matches = matcher.knnMatch(desc1, trainDeors = desc2, k = 2) #2
        p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches)
        if len(p1) >= 4:
            H, status = cv.findHomography(p1, p2, cv.RANSAC, 5.0)
            print('%d / %d  inliers/matched' % (np.sum(status), len(status)))
        else:
            H, status = None, None
            print('%d matches found, not enough for homography estimation' % len(p1))

        _vis = explore_match(win, img1, img2, kp_pairs, status, H)

    match_and_draw('find_obj')
    cv.waitKey()

    print('Done')


if __name__ == '__main__':
    print(__doc__)
    main()
    cv.destroyAllWindows()

匹配多组:

common.py

'''
This module contains some common routines used by other samples.
'''

# Python 2/3 compatibility
from __future__ import print_function
import sys
PY3 = sys.version_info[0] == 3

if PY3:
    from functools import reduce

import numpy as np
import cv2 as cv

# built-in modules
import os
import itertools as it
from contextlib import contextmanager

image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']

class Bunch(object):
    def __init__(self, **kw):
        self.__dict__.update(kw)
    def __str__(self):
        return str(self.__dict__)

def splitfn(fn):
    path, fn = os.path.split(fn)
    name, ext = os.path.splitext(fn)
    return path, name, ext

def anorm2(a):
    return (a*a).sum(-1)
def anorm(a):
    return np.sqrt( anorm2(a) )

def homotrans(H, x, y):
    xs = H[0, 0]*x + H[0, 1]*y + H[0, 2]
    ys = H[1, 0]*x + H[1, 1]*y + H[1, 2]
    s  = H[2, 0]*x + H[2, 1]*y + H[2, 2]
    return xs/s, ys/s

def to_rect(a):
    a = np.ravel(a)
    if len(a) == 2:
        a = (0, 0, a[0], a[1])
    return np.array(a, np.float64).reshape(2, 2)

def rect2rect_mtx(src, dst):
    src, dst = to_rect(src), to_rect(dst)
    cx, cy = (dst[1] - dst[0]) / (src[1] - src[0])
    tx, ty = dst[0] - src[0] * (cx, cy)
    M = np.float64([[ cx,  0, tx],
                    [  0, cy, ty],
                    [  0,  0,  1]])
    return M


def lookat(eye, target, up = (0, 0, 1)):
    fwd = np.asarray(target, np.float64) - eye
    fwd /= anorm(fwd)
    right = np.cross(fwd, up)
    right /= anorm(right)
    down = np.cross(fwd, right)
    R = np.float64([right, down, fwd])
    tvec = -np.dot(R, eye)
    return R, tvec

def mtx2rvec(R):
    w, u, vt = cv.SVDecomp(R - np.eye(3))
    p = vt[0] + u[:,0]*w[0]    # same as np.dot(R, vt[0])
    c = np.dot(vt[0], p)
    s = np.dot(vt[1], p)
    axis = np.cross(vt[0], vt[1])
    return axis * np.arctan2(s, c)

def draw_str(dst, target, s):
    x, y = target
    cv.putText(dst, s, (x+1, y+1), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv.LINE_AA)
    cv.putText(dst, s, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv.LINE_AA)

class Sketcher:
    def __init__(self, windowname, dests, colors_func):
        self.prev_pt = None
        self.windowname = windowname
        self.dests = dests
        self.colors_func = colors_func
        self.dirty = False
        self.show()
        cv.setMouseCallback(self.windowname, self.on_mouse)

    def show(self):
        cv.imshow(self.windowname, self.dests[0])

    def on_mouse(self, event, x, y, flags, param):
        pt = (x, y)
        if event == cv.EVENT_LBUTTONDOWN:
            self.prev_pt = pt
        elif event == cv.EVENT_LBUTTONUP:
            self.prev_pt = None

        if self.prev_pt and flags & cv.EVENT_FLAG_LBUTTON:
            for dst, color in zip(self.dests, self.colors_func()):
                cv.line(dst, self.prev_pt, pt, color, 5)
            self.dirty = True
            self.prev_pt = pt
            self.show()


# palette data from matplotlib/_cm.py
_jet_data =   {'red':   ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1),
                         (1, 0.5, 0.5)),
               'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1),
                         (0.91,0,0), (1, 0, 0)),
               'blue':  ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0),
                         (1, 0, 0))}

cmap_data = { 'jet' : _jet_data }

def make_cmap(name, n=256):
    data = cmap_data[name]
    xs = np.linspace(0.0, 1.0, n)
    channels = []
    eps = 1e-6
    for ch_name in ['blue', 'green', 'red']:
        ch_data = data[ch_name]
        xp, yp = [], []
        for x, y1, y2 in ch_data:
            xp += [x, x+eps]
            yp += [y1, y2]
        ch = np.interp(xs, xp, yp)
        channels.append(ch)
    return np.uint8(np.array(channels).T*255)

def nothing(*arg, **kw):
    pass

def clock():
    return cv.getTickCount() / cv.getTickFrequency()

@contextmanager
def Timer(msg):
    print(msg, '...',)
    start = clock()
    try:
        yield
    finally:
        print("%.2f ms" % ((clock()-start)*1000))

class StatValue:
    def __init__(self, smooth_coef = 0.5):
        self.value = None
        self.smooth_coef = smooth_coef
    def update(self, v):
        if self.value is None:
            self.value = v
        else:
            c = self.smooth_coef
            self.value = c * self.value + (1.0-c) * v

class RectSelector:
    def __init__(self, win, callback):
        self.win = win
        self.callback = callback
        cv.setMouseCallback(win, self.onmouse)
        self.drag_start = None
        self.drag_rect = None
    def onmouse(self, event, x, y, flags, param):
        x, y = np.int16([x, y]) # BUG
        if event == cv.EVENT_LBUTTONDOWN:
            self.drag_start = (x, y)
            return
        if self.drag_start:
            if flags & cv.EVENT_FLAG_LBUTTON:
                xo, yo = self.drag_start
                x0, y0 = np.minimum([xo, yo], [x, y])
                x1, y1 = np.maximum([xo, yo], [x, y])
                self.drag_rect = None
                if x1-x0 > 0 and y1-y0 > 0:
                    self.drag_rect = (x0, y0, x1, y1)
            else:
                rect = self.drag_rect
                self.drag_start = None
                self.drag_rect = None
                if rect:
                    self.callback(rect)
    def draw(self, vis):
        if not self.drag_rect:
            return False
        x0, y0, x1, y1 = self.drag_rect
        cv.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
        return True
    @property
    def dragging(self):
        return self.drag_rect is not None


def grouper(n, iterable, fillvalue=None):
    '''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx'''
    args = [iter(iterable)] * n
    if PY3:
        output = it.zip_longest(fillvalue=fillvalue, *args)
    else:
        output = it.izip_longest(fillvalue=fillvalue, *args)
    return output

def mosaic(w, imgs):
    '''Make a grid from images.
    w    -- number of grid columns
    imgs -- images (must have same size and format)
    '''
    imgs = iter(imgs)
    if PY3:
        img0 = next(imgs)
    else:
        img0 = imgs.next()
    pad = np.zeros_like(img0)
    imgs = it.chain([img0], imgs)
    rows = grouper(w, imgs, pad)
    return np.vstack(map(np.hstack, rows))

def getsize(img):
    h, w = img.shape[:2]
    return w, h

def mdot(*args):
    return reduce(np.dot, args)

def draw_keypoints(vis, keypoints, color = (0, 255, 255)):
    for kp in keypoints:
        x, y = kp.pt
        cv.circle(vis, (int(x), int(y)), 2, color)

find_obj.py

'''
Feature-based image matching sample.
Note, that you will need the https://github.com/opencv/opencv_contrib repo for SIFT and SURF
USAGE
  find_obj.py [--feature=<sift|surf|orb|akaze|brisk>[-flann]] [ <image1> <image2> ]
  --feature  - Feature to use. Can be sift, surf, orb or brisk. Append '-flann'
               to feature name to use Flann-based matcher instead bruteforce.
  Press left mouse button on a feature point to see its matching point.
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv

from common import anorm, getsize

FLANN_INDEX_KDTREE = 1  # bug: flann enums are missing
FLANN_INDEX_LSH    = 6


def init_feature(name):
    chunks = name.split('-')
    if chunks[0] == 'sift':
        detector = cv.xfeatures2d.SIFT_create()
        norm = cv.NORM_L2
    elif chunks[0] == 'surf':
        detector = cv.xfeatures2d.SURF_create(800)
        norm = cv.NORM_L2
    elif chunks[0] == 'orb':
        detector = cv.ORB_create(400)
        norm = cv.NORM_HAMMING
    elif chunks[0] == 'akaze':
        detector = cv.AKAZE_create()
        norm = cv.NORM_HAMMING
    elif chunks[0] == 'brisk':
        detector = cv.BRISK_create()
        norm = cv.NORM_HAMMING
    else:
        return None, None
    if 'flann' in chunks:
        if norm == cv.NORM_L2:
            flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        else:
            flann_params= dict(algorithm = FLANN_INDEX_LSH,
                               table_number = 6, # 12
                               key_size = 12,     # 20
                               multi_probe_level = 1) #2
        matcher = cv.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
    else:
        matcher = cv.BFMatcher(norm)
    return detector, matcher


def filter_matches(kp1, kp2, matches, ratio = 0.75):
    mkp1, mkp2 = [], []
    for m in matches:
        if len(m) == 2 and m[0].distance < m[1].distance * ratio:
            m = m[0]
            mkp1.append( kp1[m.queryIdx] )
            mkp2.append( kp2[m.trainIdx] )
    p1 = np.float32([kp.pt for kp in mkp1])
    p2 = np.float32([kp.pt for kp in mkp2])
    kp_pairs = zip(mkp1, mkp2)
    return p1, p2, list(kp_pairs)

def best_fit_transform(A, B):
        '''
        Calculates the least-squares best-fit transform that maps corresponding points A to B in m spatial dimensions
        Input:
          A: Nxm numpy array of corresponding points
          B: Nxm numpy array of corresponding points
        Returns:
          T: (m+1)x(m+1) homogeneous transformation matrix that maps A on to B
          R: mxm rotation matrix
          t: mx1 translation vector
        '''
        from sklearn.neighbors import NearestNeighbors
        assert A.shape == B.shape

        # get number of dimensions
        m = A.shape[1]

        # translate points to their centroids
        centroid_A = np.mean(A, axis=0)
        centroid_B = np.mean(B, axis=0)
        AA = A - centroid_A
        BB = B - centroid_B

        # rotation matrix
        H = np.dot(AA.T, BB)
        U, S, Vt = np.linalg.svd(H)
        R = np.dot(Vt.T, U.T)

        # special reflection case
        if np.linalg.det(R) < 0:
            Vt[m - 1, :] *= -1
            R = np.dot(Vt.T, U.T)

        # translation
        t = centroid_B.T - np.dot(R, centroid_A.T)

        # homogeneous transformation
        T = np.identity(m + 1)
        T[:m, :m] = R
        T[:m, m] = t
        return T, R, t

def explore_match(img1, img2, dep1, dep2, name1, name2, kp_pairs, status = None, H = None):
    h1, w1 = img1.shape[:2]
    h2, w2 = img2.shape[:2]
    vis = np.zeros((max(h1, h2), w1+w2), np.uint8)
    vis[:h1, :w1] = img1
    vis[:h2, w1:w1+w2] = img2
    vis = cv.cvtColor(vis, cv.COLOR_GRAY2BGR)

    if H is not None:
        corners = np.float32([[0, 0], [w1, 0], [w1, h1], [0, h1]])
        corners = np.int32( cv.perspectiveTransform(corners.reshape(1, -1, 2), H).reshape(-1, 2) + (w1, 0) )
        cv.polylines(vis, [corners], True, (255, 255, 255))

    if status is None:
        status = np.ones(len(kp_pairs), np.bool_)
    p1, p2 = [], []  # python 2 / python 3 change of zip unpacking
    newp1, newp2 = [], []
    for kpp in kp_pairs:
        p1.append(np.int32(kpp[0].pt))
        newp1.append(np.int32(kpp[0].pt))
        p2.append(np.int32(np.array(kpp[1].pt) + [w1, 0]))
        newp2.append(np.int32(np.array(kpp[1].pt)))

    intrinsics = [[2269.16, 0., 1065.54], [0., 2268.4, 799.032], [0., 0., 1.]]
    K0 = np.array(intrinsics)
    newCameraMatrix = K0

    retval, mask = cv.findEssentialMat(np.array(newp1), np.array(newp2), newCameraMatrix, method=cv.RANSAC, threshold=20)

    trp1 = []
    trp2 = []
    for key, ((x1, y1), (x2, y2)) in enumerate(zip(newp1, newp2)):
        left_d = dep1[y1][x1]
        left_z = float(left_d) / newCameraMatrix[2][2]
        left_x = (x1 - newCameraMatrix[0][2]) * left_z / newCameraMatrix[0][0]
        left_y = (y1 - newCameraMatrix[1][2]) * left_z / newCameraMatrix[1][1]
        points1 = np.array([left_x, left_y, left_z])
        flag1 = (np.sum(abs(points1))<0.001)
        right_d = dep2[y2][x2]
        right_z = float(right_d) / newCameraMatrix[2][2]
        right_x = (x2 - newCameraMatrix[0][2]) * right_z / newCameraMatrix[0][0]
        right_y = (y2 - newCameraMatrix[1][2]) * right_z / newCameraMatrix[1][1]
        points2 = np.array([right_x, right_y, right_z])
        flag2 = (np.sum(abs(points2)) < 0.001)

        if mask[key]==True and flag1==False and flag2==False:
            trp1.append(points1)
            trp2.append(points2)

    newtrp1 = np.array(trp1)
    newtrp2 = np.array(trp2)
    if len(newtrp1) < 20:
        return

    T, R, t = best_fit_transform(newtrp1, newtrp2)

    writeR = R.reshape((9,))
    writet = t.reshape((3,))
    writeRT = np.concatenate((writeR,writet),axis=0)
    file_write_obj = open("./RT_txt/"+name1+"_split_"+name2+".txt", 'w')
    for var in writeRT:
        file_write_obj.writelines(str(var))
        file_write_obj.write('\n')
    file_write_obj.close()
    green = (0, 255, 0)
    red = (0, 0, 255)
    kp_color = (51, 103, 236)
    for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
        if inlier:
            col = green
            cv.circle(vis, (x1, y1), 2, col, -1)
            cv.circle(vis, (x2, y2), 2, col, -1)
        else:
            col = red
            r = 2
            thickness = 3
            cv.line(vis, (x1-r, y1-r), (x1+r, y1+r), col, thickness)
            cv.line(vis, (x1-r, y1+r), (x1+r, y1-r), col, thickness)
            cv.line(vis, (x2-r, y2-r), (x2+r, y2+r), col, thickness)
            cv.line(vis, (x2-r, y2+r), (x2+r, y2-r), col, thickness)
    for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
        if inlier:
            cv.line(vis, (x1, y1), (x2, y2), green)
    cv.imwrite("./pairs_save_image/"+name1+"_split_"+name2+".jpg", vis)

pairs_list.txt 

1,2,3
4,5,6,7,8,9,10,11,12,13,14,15,16
17,18,19,20,21,22,23,24,25,26,27
28,29,30,31,32,33
34,35,36,37,38,39,40
41,42,43,44,45,46,47,48,49,50,51,52,53,54
55,56,57,58,59,60
61,62,63,64,65
66,67,68,69,70,71,74,73,75,76,77,78,79,80,81,84,85,86,82,83

asift.py

'''
Affine invariant feature-based image matching sample.
This sample is similar to find_obj.py, but uses the affine transformation
space sampling technique, called ASIFT [1]. While the original implementation
is based on SIFT, you can try to use SURF or ORB detectors instead. Homography RANSAC
is used to reject outliers. Threading is used for faster affine sampling.
[1] http://www.ipol.im/pub/algo/my_affine_sift/
USAGE
  asift.py [--feature=<sift|surf|orb|brisk>[-flann]] [ <image1> <image2> ]
  --feature  - Feature to use. Can be sift, surf, orb or brisk. Append '-flann'
               to feature name to use Flann-based matcher instead bruteforce.
  Press left mouse button on a feature point to see its matching point.
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv
import os

# built-in modules
import itertools as it
from multiprocessing.pool import ThreadPool

# local modules
from common import Timer
from find_obj import init_feature, filter_matches, explore_match


def affine_skew(tilt, phi, img, mask=None):
    '''
    affine_skew(tilt, phi, img, mask=None) -> skew_img, skew_mask, Ai
    Ai - is an affine transform matrix from skew_img to img
    '''
    h, w = img.shape[:2]
    if mask is None:
        mask = np.zeros((h, w), np.uint8)
        mask[:] = 255
    A = np.float32([[1, 0, 0], [0, 1, 0]])
    if phi != 0.0:
        phi = np.deg2rad(phi)
        s, c = np.sin(phi), np.cos(phi)
        A = np.float32([[c,-s], [ s, c]])
        corners = [[0, 0], [w, 0], [w, h], [0, h]]
        tcorners = np.int32( np.dot(corners, A.T) )
        x, y, w, h = cv.boundingRect(tcorners.reshape(1,-1,2))
        A = np.hstack([A, [[-x], [-y]]])
        img = cv.warpAffine(img, A, (w, h), flags=cv.INTER_LINEAR, borderMode=cv.BORDER_REPLICATE)
    if tilt != 1.0:
        s = 0.8*np.sqrt(tilt*tilt-1)
        img = cv.GaussianBlur(img, (0, 0), sigmaX=s, sigmaY=0.01)
        img = cv.resize(img, (0, 0), fx=1.0/tilt, fy=1.0, interpolation=cv.INTER_NEAREST)
        A[0] /= tilt
    if phi != 0.0 or tilt != 1.0:
        h, w = img.shape[:2]
        mask = cv.warpAffine(mask, A, (w, h), flags=cv.INTER_NEAREST)
    Ai = cv.invertAffineTransform(A)
    return img, mask, Ai


def affine_detect(detector, img, mask=None, pool=None):
    '''
    affine_detect(detector, img, mask=None, pool=None) -> keypoints, descrs
    Apply a set of affine transformations to the image, detect keypoints and
    reproject them into initial image coordinates.
    See http://www.ipol.im/pub/algo/my_affine_sift/ for the details.
    ThreadPool object may be passed to speedup the computation.
    '''
    params = [(1.0, 0.0)]
    for t in 2**(0.5*np.arange(1,6)):
        for phi in np.arange(0, 180, 72.0 / t):
            params.append((t, phi))

    def f(p):
        t, phi = p
        timg, tmask, Ai = affine_skew(t, phi, img)
        keypoints, descrs = detector.detectAndCompute(timg, tmask)
        for kp in keypoints:
            x, y = kp.pt
            kp.pt = tuple( np.dot(Ai, (x, y, 1)) )
        if descrs is None:
            descrs = []
        return keypoints, descrs

    keypoints, descrs = [], []
    if pool is None:
        ires = it.imap(f, params)
    else:
        ires = pool.imap(f, params)

    for i, (k, d) in enumerate(ires):
        print('affine sampling: %d / %d\r' % (i+1, len(params)), end='')
        keypoints.extend(k)
        descrs.extend(d)

    print()
    return keypoints, np.array(descrs)

def main():

    feature_name = 'sift'
    mypath = "./11-14-tif"
    if not os.path.exists("./pairs_save_image"):
        os.makedirs("./pairs_save_image")
    if not os.path.exists("./RT_txt"):
        os.makedirs("./RT_txt")

    detector, matcher = init_feature(feature_name)
    print('using', feature_name)

    print(cv.getNumberOfCPUs())
    pool=ThreadPool(processes = cv.getNumberOfCPUs())

    import shutil
    with open("pairs_list.txt") as files:
        for line in files:
            line_t = line.replace('\n','').split(',')
            for key1 in range(len(line_t)-1):
                name = str(line_t[key1]) + "_IMG_Texture_8Bit_split_" + str(line_t[key1+1]) + "_IMG_Texture_8Bit.jpg"
                img1 = cv.imread(os.path.join(mypath,str(line_t[key1])+"_IMG_Texture_8Bit.png"), cv.IMREAD_GRAYSCALE)
                dep1 = cv.imread(os.path.join(mypath,str(line_t[key1])+"_IMG_DepthMap.tif"), -1)

                img2 = cv.imread(os.path.join(mypath,str(line_t[key1+1])+"_IMG_Texture_8Bit.png"), cv.IMREAD_GRAYSCALE)
                dep2 = cv.imread(os.path.join(mypath,str(line_t[key1+1])+"_IMG_DepthMap.tif"), -1)

                kp1, desc1 = affine_detect(detector, img1, pool=pool)
                kp2, desc2 = affine_detect(detector, img2, pool=pool)
                name1 = str(line_t[key1])+"_IMG_Texture_8Bit"
                name2 = str(line_t[key1+1])+"_IMG_Texture_8Bit"
                print('%s - %d features, %s - %d features' % (name1, len(kp1), name2, len(kp2)))

                raw_matches = matcher.knnMatch(desc1, trainDeors = desc2, k = 2)
                p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches)

                if len(p1) >= 100:
                    H, status = cv.findHomography(p1, p2, cv.RANSAC, 20.0)
                    print('%d / %d  inliers/matched' % (np.sum(status), len(status)))
                    # do not draw outliers (there will be a lot of them)
                    kp_pairs = [kpp for kpp, flag in zip(kp_pairs, status) if flag]
                else:
                    continue
                    print('%d matches found, not enough for homography estimation' % len(p1))
                explore_match(img1, img2, dep1, dep2, name1, name2, kp_pairs, None, H)
        print('Done')


if __name__ == '__main__':
    print(__doc__)
    main()

C++格式实现:

ASiftDetector.cpp ASiftDetector.h main.cpp CMakeLists.txt

ASiftDetector.cpp 

//
// Created by spple on 19-12-6.
//

#include "ASiftDetector.h"

#include <iostream>

#include <opencv2/xfeatures2d.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>

ASiftDetector::ASiftDetector()
{
    detector = cv::xfeatures2d::SiftFeatureDetector::create();
    num = 0;

}

void ASiftDetector::detectAndCompute(const Mat& img, std::vector< KeyPoint >& keypoints, Mat& deors)
{

//    params = [(1.0, 0.0)]
//    for t in 2**(0.5*np.arange(1,6)):
//    for phi in np.arange(0, 180, 72.0 / t):
//    params.append((t, phi))

//    //affine参数
//    vector<vector<double>> params;
//    vector<double> temp;
//    temp.push_back(1.0);
//    temp.push_back(0.0);
//    params.push_back(temp);
//
//    for(int tl = 1; tl < 6; tl++) {
//        double t = pow(2, 0.5 * tl);
//        for (double phi = 0; phi < 180; phi += 72.0/t) {
//            temp.clear();
//            temp.push_back(t);
//            temp.push_back(phi);
//            params.push_back(temp);
//        }
//    }


    keypoints.clear();
    deors = Mat(0, 128, CV_32F);
    int flag = 0;
    for(int tl = 0; tl < 6; tl++)
    {
        double t = pow(2, 0.5*tl);
        for(int phi = 0; phi < 180; phi += 72.0/t)
        {
            std::vector<KeyPoint> kps;
            Mat desc;

            Mat timg, mask, Ai;
            img.copyTo(timg);

            affineSkew(t, phi, timg, mask, Ai);

//            debug:
//            flag += 1;
//            Mat img_disp;
//            cv::bitwise_and(timg, timg, img_disp, mask);
//            std::stringstream ssTemp;
//            ssTemp<<flag;
//            std::string strDst=ssTemp.str();
//            imwrite("/home/spple/CLionProjects/ASIFT/11.14/P10_"+strDst+".jpg", img_disp);

            detector->detectAndCompute(timg, mask, kps, desc);

            for(unsigned int i = 0; i < kps.size(); i++)
            {
                Point3f kpt(kps[i].pt.x, kps[i].pt.y, 1);
                Mat kpt_t = Ai*Mat(kpt);
                kps[i].pt.x = kpt_t.at<float>(0,0);
                kps[i].pt.y = kpt_t.at<float>(1,0);
                //越界判断
                if ((kps[i].pt.x < 0) || (kps[i].pt.y < 0 || (kps[i].pt.x > img.cols-1) || (kps[i].pt.y > img.rows-1)))
                {
                    num++;
                    //std::cout << kps[i].pt.x <<":::" << kps[i].pt.y << std::endl;
                    if (kps[i].pt.x < 0)
                        kps[i].pt.x = 0;
                    if (kps[i].pt.y < 0)
                        kps[i].pt.y = 0;
                    if (kps[i].pt.x > img.cols-1)
                        kps[i].pt.x = img.cols-1;
                    if (kps[i].pt.y > img.rows-1)
                        kps[i].pt.y = img.rows-1;
                }
            }
            keypoints.insert(keypoints.end(), kps.begin(), kps.end());
            deors.push_back(desc);
        }
    }
    std::cout <<"num:::" << num << std::endl;
}

void ASiftDetector::affineSkew(double tilt, double phi, Mat& img, Mat& mask, Mat& Ai)
{
    int h = img.rows;
    int w = img.cols;

    mask = Mat(h, w, CV_8UC1, Scalar(255));

    Mat A = Mat::eye(2,3, CV_32F);

    if(phi != 0.0)
    {
        phi *= M_PI/180.;
        double s = sin(phi);
        double c = cos(phi);

        A = (Mat_<float>(2,2) << c, -s, s, c);

        Mat corners = (Mat_<float>(4,2) << 0, 0, w, 0, w, h, 0, h);
        Mat tcorners = corners*A.t();
        Mat tcorners_x, tcorners_y;
        tcorners.col(0).copyTo(tcorners_x);
        tcorners.col(1).copyTo(tcorners_y);
        std::vector<Mat> channels;
        channels.push_back(tcorners_x);
        channels.push_back(tcorners_y);
        merge(channels, tcorners);

        Rect rect = boundingRect(tcorners);
        A =  (Mat_<float>(2,3) << c, -s, -rect.x, s, c, -rect.y);

        warpAffine(img, img, A, Size(rect.width, rect.height), INTER_LINEAR, BORDER_REPLICATE);
    }
    if(tilt != 1.0)
    {
        double s = 0.8*sqrt(tilt*tilt-1);
        GaussianBlur(img, img, Size(0,0), s, 0.01);
        resize(img, img, Size(0,0), 1.0/tilt, 1.0, INTER_NEAREST);
        A.row(0) = A.row(0)/tilt;
    }
    if(tilt != 1.0 || phi != 0.0)
    {
        h = img.rows;
        w = img.cols;
        warpAffine(mask, mask, A, Size(w, h), INTER_NEAREST);
    }
    invertAffineTransform(A, Ai);
}

ASiftDetector.h

//
// Created by spple on 19-12-6.
//

#ifndef ASIFT_ASIFTDETECTOR_H
#define ASIFT_ASIFTDETECTOR_H

#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/xfeatures2d.hpp>

using namespace cv;

class ASiftDetector
{
public:
    ASiftDetector();

    void detectAndCompute(const Mat& img, std::vector< KeyPoint >& keypoints, Mat& deors);

private:
    void affineSkew(double tilt, double phi, Mat& img, Mat& mask, Mat& Ai);

    cv::Ptr<cv::xfeatures2d::SiftFeatureDetector> detector;
    int num;
};


#endif //ASIFT_ASIFTDETECTOR_H

main.cpp

#include <iostream>
#include <iomanip>
#include <vector>
#include <cmath>
#include <cassert>
#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/xfeatures2d.hpp>
#include <opencv2/flann/flann.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include "ASiftDetector.h"
using namespace std;
using namespace cv;
#include <time.h>

//    drawMatches(OriginalGrayImage, asiftKeypoints_query, targetGrayImage, asiftKeypoints_object, goodgoodMatches, img_RR_matches,
//            Scalar(0, 255, 0), Scalar(0, 255, 0), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

cv::Mat UpDownDrawInlier(const cv::Mat &queryImage, const cv::Mat &objectImage,
                         const vector<cv::Point2f> &queryCoord, const vector<cv::Point2f> &objectCoord) {
    Size sz = Size(queryImage.size().width,
                   queryImage.size().height + objectImage.size().height);
    Mat matchingImage = Mat::zeros(sz, CV_8UC3);

    // 设置matchingImage的感兴趣区域大小并赋予原图
    Mat roi1 = Mat(matchingImage, Rect(0, 0, queryImage.size().width, queryImage.size().height));
    queryImage.copyTo(roi1);
    Mat roi2 = Mat(matchingImage,
                   Rect(0, queryImage.size().height, objectImage.size().width, objectImage.size().height));
    objectImage.copyTo(roi2);

    //画出点
    for (int i = 0; i < (int) queryCoord.size(); ++i) {
        Point2f pt1 = queryCoord[i];
        Point2f pt2 = objectCoord[i];
        Point2f from = pt1;
        Point2f to = Point(pt2.x, queryImage.size().height + pt2.y);
        line(matchingImage, from, to, Scalar(0, 255, 255));
    }
    return matchingImage;
}


cv::Mat LeftUpRightDownDrawInlier(const cv::Mat &queryImage, const cv::Mat &objectImage,
                                  const vector<cv::Point2f> &queryCoord, const vector<cv::Point2f> &objectCoord)
{
    Size sz = Size(queryImage.size().width + objectImage.size().width,
                   queryImage.size().height + objectImage.size().height);
    Mat matchingImage = Mat::zeros(sz, CV_8UC3);

    // 设置matchingImage的感兴趣区域大小并赋予原图
    Mat roi1 = Mat(matchingImage, Rect(0, 0, queryImage.size().width, queryImage.size().height));
    queryImage.copyTo(roi1);
    Mat roi2 = Mat(matchingImage, Rect(queryImage.size().width, queryImage.size().height, objectImage.size().width, objectImage.size().height));
    objectImage.copyTo(roi2);

    //画出点
    for (int i = 0; i < (int)queryCoord.size(); ++i) {
        Point2f pt1 = queryCoord[i];
        Point2f pt2 = objectCoord[i];
        Point2f from = pt1;
        Point2f to = Point(pt2.x + queryImage.size().width, pt2.y + queryImage.size().height);
        line(matchingImage, from, to, Scalar(0, 255, 255));
    }
    return matchingImage;
}

/*
 * Calculates the least-squares best-fit transform that maps corresponding points A to B in m spatial dimensions
 * Input:
 *  A: Nxm numpy array of corresponding points
 *  B: Nxm numpy array of corresponding points
 * Returns:
 *  T: (m+1)x(m+1) homogeneous transformation matrix that maps A on to B
 *  R: mxm rotation matrix
 *  t: mx1 translation vector
 *  //https://blog.csdn.net/kewei9/article/details/74157236
 */
void best_fit_transform(std::vector<cv::Point3f> A, std::vector<cv::Point3f> B, cv::Mat & T, cv::Mat & R, cv::Mat & t)
{
    if (A.size()!=B.size())
    {
        std::cout <<"error:::" << "A.size()!=B.size()" << std::endl;
    }
    int pointsNum = A.size();

    //# translate points to their centroids
    double srcSumX = 0.0f;
    double srcSumY = 0.0f;
    double srcSumZ = 0.0f;

    double dstSumX = 0.0f;
    double dstSumY = 0.0f;
    double dstSumZ = 0.0f;

    for (int i = 0; i < pointsNum; ++ i)
    {
        srcSumX += A[i].x;
        srcSumY += A[i].y;
        srcSumZ += A[i].z;

        dstSumX += B[i].x;
        dstSumY += B[i].y;
        dstSumZ += B[i].z;
    }

    cv::Point3f centerSrc, centerDst;

    centerSrc.x = float(srcSumX / pointsNum);
    centerSrc.y = float(srcSumY / pointsNum);
    centerSrc.z = float(srcSumZ / pointsNum);

    centerDst.x = float(dstSumX / pointsNum);
    centerDst.y = float(dstSumY / pointsNum);
    centerDst.z = float(dstSumZ / pointsNum);

    int m  = 3;
    cv::Mat srcMat(m, pointsNum, CV_32FC1);
    cv::Mat dstMat(m, pointsNum, CV_32FC1);

    float* srcDat = (float*)(srcMat.data);
    float* dstDat = (float*)(dstMat.data);
    for (int i = 0; i < pointsNum; ++ i)
    {
        srcDat[i] = A[i].x - centerSrc.x;
        srcDat[pointsNum + i] = A[i].y - centerSrc.y;
        srcDat[pointsNum * 2 + i] = A[i].z - centerSrc.z;

        dstDat[i] = B[i].x - centerDst.x;
        dstDat[pointsNum + i] = B[i].y - centerDst.y;
        dstDat[pointsNum * 2 + i] = B[i].z - centerDst.z;
    }

    //# rotation matrix
    cv::Mat matS = srcMat * dstMat.t();

    cv::Mat matU, matW, matV;
    cv::SVDecomp(matS, matW, matU, matV);
    R = matV.t() * matU.t();

    //# special reflection case
    double det = cv::determinant(R);
    if (det < 0)
    {
        //https://blog.csdn.net/xiaowei_cqu/article/details/19839019
        float* data= matV.ptr<float>(m-1);
        for (int i=0; i<matV.cols; i++) {
            *data++= (*data * (-1));
        }
        R = matV.t() * matU.t();
    }

    //t = centroid_B.T - np.dot(R, centroid_A.T)
    //# translation
    //Mat(centerDst)=3*1
    t = Mat(centerDst) - (R * Mat(centerSrc));

    //T = np.identity(m + 1)
    //T[:m, :m] = R
    //T[:m, m] = t
    //# homogeneous transformation
    double datM[] = {1, 0, 0, 0,   0, 1, 0, 0,   0, 0, 1, 0,   0, 0, 0, 1};
    cv::Mat matM(4, 4, CV_32FC1, datM);
    T = matM.clone();

}

int main() {
    cv::Mat OriginalGrayImage = cv::imread("/home/spple/CLionProjects/ASIFT/11.14/22_IMG_Texture_8Bit.png", -1);
    cv::Mat targetGrayImage = cv::imread("/home/spple/CLionProjects/ASIFT/11.14/33_IMG_Texture_8Bit.png", -1);


    clock_t begin = clock();

    ASiftDetector asiftDetector;
    vector<KeyPoint> asiftKeypoints_query;
    Mat asiftDeors_query;
    asiftDetector.detectAndCompute(OriginalGrayImage, asiftKeypoints_query, asiftDeors_query);
    vector<KeyPoint> asiftKeypoints_object;
    Mat asiftDeors_object;
    asiftDetector.detectAndCompute(targetGrayImage, asiftKeypoints_object, asiftDeors_object);
    //overlap

    clock_t end = clock();

    cout<<"Running time: "<<(double)(end-begin)/CLOCKS_PER_SEC*1000<<"ms"<<endl;

    std::cout <<"Keypoints_query_num:::" << asiftKeypoints_query.size() << std::endl;
    std::cout <<"Keypoints_object_num:::" << asiftKeypoints_object.size() << std::endl;


    //匹配
    //    -   `BruteForce` (it uses L2 )
    //    -   `BruteForce-L1`
    //    -   `BruteForce-Hamming`
    //    -   `BruteForce-Hamming(2)`
    //    -   `FlannBased`
    cv::Ptr<cv::DeorMatcher> matcher = cv::DeorMatcher::create("FlannBased");
    vector<vector<DMatch> > matches;
    matcher->knnMatch(asiftDeors_query,asiftDeors_object, matches, 2);

    std::vector<cv::Point2f> queryPoints;
    std::vector<cv::Point2f> trainPoints;
    vector<DMatch> goodMatches;
    //https://blog.csdn.net/linxihe123/article/details/70173476
    vector<pair<KeyPoint,KeyPoint> >kp_pairs_temp;
    for (size_t i = 0; i < matches.size(); i++)
    {
        if ((matches[i][0].distance < 0.75 * matches[i][1].distance) && (matches[i].size()==2))
        {
            KeyPoint temp1 = asiftKeypoints_query[matches[i][0].queryIdx];
            KeyPoint temp2 = asiftKeypoints_object[matches[i][0].trainIdx];
            goodMatches.push_back(matches[i][0]);
            queryPoints.push_back(temp1.pt);
            trainPoints.push_back(temp2.pt);
            kp_pairs_temp.push_back(make_pair(temp1,temp2));
        }
    }
    Mat img_RR_matches;
    img_RR_matches = LeftUpRightDownDrawInlier(OriginalGrayImage, targetGrayImage, queryPoints, trainPoints);
    imwrite("../11.14/c.jpg",img_RR_matches);

    // 4点条件判断
    const int minNumberMatchesAllowed = 4;
    if (queryPoints.size() < minNumberMatchesAllowed)
        return false;

    double reprojectionThreshold=20.0;
    std::vector<unsigned char> inliersMask(goodMatches.size());
    Mat homography = findHomography(queryPoints,
                                    trainPoints,
                                    FM_RANSAC,
                                    reprojectionThreshold,
                                    inliersMask,
                                    2000,
                                    0.995);
//    Mat homography = findHomography(queryPoints,
//                                    trainPoints,
//                                    inliersMask,
//                                    FM_RANSAC);

//    std::vector<unsigned char> RansacStatus(goodMatches.size());

//    Mat Fundamental = findFundamentalMat(queryPoints,
//                                         trainPoints,
//                                         FM_RANSAC,
//                                         20,
//                                         0.99,
//                                         RansacStatus);

//    Mat Fundamental = findFundamentalMat(queryPoints,
//                                         trainPoints,
//                                         RansacStatus,
//                                         FM_RANSAC);

    vector<pair<KeyPoint,KeyPoint> >kp_pairs;
    std::vector<cv::Point2f> newp1;
    std::vector<cv::Point2f> newp2;
    vector<DMatch> goodgoodMatches;
    for (size_t i=0; i<inliersMask.size(); i++)
    {
        if (inliersMask[i])
        {
            goodgoodMatches.push_back(goodMatches[i]);
            kp_pairs.push_back(kp_pairs_temp[i]);
            newp1.push_back(kp_pairs_temp[i].first.pt);
            newp2.push_back(kp_pairs_temp[i].second.pt);
        }

    }

    img_RR_matches = LeftUpRightDownDrawInlier(OriginalGrayImage, targetGrayImage, newp1, newp2);
    imwrite("../11.14/a.jpg",img_RR_matches);

    //https://docs.opencv.org/3.0-beta/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#findessentialmat
    //https://docs.opencv.org/3.4.8/d9/d0c/group__calib3d.html#ga13f7e34de8fa516a686a56af1196247f
    std::vector<unsigned char> EssentialMask(newp1.size());
    cv::Mat intrinsics = (cv::Mat_<float>(3, 3) << 2269.16, 0, 1065.54, 0, 2268.4, 799.032, 0, 0, 1);
    Mat Essential = findEssentialMat(newp1, newp2, intrinsics, cv::RANSAC, 0.999, 20, EssentialMask);

    cv::Mat OriginalDepthImage = cv::imread("/home/spple/CLionProjects/ASIFT/11.14/22_IMG_DepthMap.tif", -1);
    cv::Mat targetDepthImage = cv::imread("/home/spple/CLionProjects/ASIFT/11.14/33_IMG_DepthMap.tif", -1);

    std::vector<cv::Point3f> trp1;
    std::vector<cv::Point3f> trp2;
    std::vector<cv::Point2f> trp1_temp;
    std::vector<cv::Point2f> trp2_temp;
    for (size_t key=0; key<newp1.size(); key++)
    {
        float x1 = newp1[key].x;
        float y1 = newp1[key].y;
        float x2 = newp2[key].x;
        float y2 = newp2[key].y;
        float d1 = OriginalDepthImage.at<float>(int(y1),int(x1));
        cv::Point3f p1;
        p1.z = float(d1) / intrinsics.ptr<float>(2)[2];
        p1.x = (x1 - intrinsics.ptr<float>(0)[2]) * p1.z / intrinsics.ptr<float>(0)[0];
        p1.y = (y1 - intrinsics.ptr<float>(1)[2]) * p1.z / intrinsics.ptr<float>(1)[1];

        float d2 = targetDepthImage.at<float>(int(y2),int(x2));
        cv::Point3f p2;
        p2.z = float(d2) / intrinsics.ptr<float>(2)[2];
        p2.x = (x2 - intrinsics.ptr<float>(0)[2]) * p2.z / intrinsics.ptr<float>(0)[0];
        p2.y = (y2 - intrinsics.ptr<float>(1)[2]) * p2.z / intrinsics.ptr<float>(1)[1];

        if(EssentialMask[key])
        {
            trp1.push_back(p1);
            trp2.push_back(p2);

            trp1_temp.push_back(newp1[key]);
            trp2_temp.push_back(newp2[key]);
        }
    }

    img_RR_matches = LeftUpRightDownDrawInlier(OriginalGrayImage, targetGrayImage, trp1_temp, trp2_temp);
    imwrite("../11.14/b.jpg",img_RR_matches);
    cout << "ICP start" << endl;
    Mat T, R, t;
    best_fit_transform(trp1, trp2, T, R, t);

    /*
     * python下的结果
     * 11-22
    [[ 0.9893    0.04623   0.1395  ]
     [-0.04523   0.999    -0.0105  ]
     [-0.1399    0.004074  0.99    ]]
    [-42.38  92.5  -93.5 ]

     * 11-33
    [[ 0.979   -0.03976 -0.2006 ]
     [ 0.01021  0.9893  -0.1462 ]
     [ 0.2042   0.1411   0.9688 ]]
    [ -2.81   162.   -51.78]
     */

    cout << R << endl;
    cout << t << endl;
    cout << "end code" << endl;
    return 0;
}

CMakeLists.txt

cmake_minimum_required(VERSION 3.12)
project(ASIFT)

set(CMAKE_CXX_STANDARD 14)

set(OpenCV_DIR "/media/spple/新加卷/Dataset/opencv-3.4.8/install/share/OpenCV/")
find_package(OpenCV REQUIRED)

INCLUDE_DIRECTORIES(
        ${OpenCV_INCLUDE_DIRS}
)

add_executable(ASIFT main.cpp ASiftDetector.h ASiftDetector.cpp)
target_link_libraries(ASIFT ${OpenCV_LIBS})

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/254154.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

回收站数据恢复,分享3个可行方法!

“我真的太粗心啦&#xff01;本来想删除一些电脑里不重要的文件&#xff0c;但是不小心把一些很重要的文件一起删除了&#xff0c;这可怎么办呢&#xff1f;我应该通过什么方法找回这些文件呢&#xff1f;” 在使用电脑的过程中&#xff0c;误删文件是很多用户都无法避免的一件…

【Swiss-Model 同源建模】

Swiss-Model是一种同源建模方法&#xff0c;其基本原理是利用序列的同源性来推断蛋白质的三维结构。具体来说&#xff0c;就是通过找到与目标蛋白质序列同源且结构已知的模板蛋白质&#xff0c;来预测目标蛋白质的结构。 同源建模的主要步骤包括&#xff1a; 模板的确定&…

【网络协议】网络运维管理神经-SNMP协议

文章目录 什么是SNMP&#xff1f;SNMP的组件SNMP的历史版本SNMP端口SNMP配置案例SNMP工作原理SNMP的基本工作原理SNMP的操作类型SNMP TrapsSNMP Inform SNMP的应用场景推荐阅读 什么是SNMP&#xff1f; SNMP&#xff08;Simple Network Management Protocol&#xff0c;简单网…

css的元素显示模式(有单行文字垂直居中,侧边栏等案例)

目录 1. 什么是元素的显示模式 2. 元素显示模式的类型 块元素 行内元素 行内块元素 3. 元素显示模式的转换 4.文字垂直居中 5.具体实现案例 1. 什么是元素的显示模式 定义&#xff1a;元素显示模式就是元素&#xff08;标签&#xff09;以什么方式进行显示&#xff0c;…

SpringBoot整合Redis——实现点赞功能

目录 点赞功能 设计思路 实现 正在思考和学习的问题 回顾redis中的set 使用方法 使用场景 回顾springboot整合redis 1.引入必要的依赖。 2.在配置文件application.properties/yml中 配置redis的连接信息 3. 测试 点赞功能 设计思路 点赞功能的两个接口&#xff1a; 1.点赞&…

Spring之容器:IOC(1)

学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持&#xff0c;想组团高效学习… 想写博客但无从下手&#xff0c;急需…

自动封箱打包码垛缠绕流水线案例

广西交投在某地新建工厂后&#xff0c;需要建设一条生产隧道灯&#xff0c;后段自动封箱打包码垛缠绕包装线。 凯隆包装在深入了解客户需求后&#xff0c;结合客户实际生产情况&#xff0c;为客户量身定制了集智能感应系统、产品自动折盖上下封箱、捆扎两道打包带、码垛机械臂自…

Linux平台下HTTP协议使用指南与代码展示

在Linux平台下&#xff0c;HTTP协议的应用非常广泛&#xff0c;它被用于Web开发、网络爬虫、API调用等场景。了解并掌握HTTP协议&#xff0c;对于Linux系统的开发和使用都非常重要。下面&#xff0c;我们将为您介绍Linux平台下HTTP协议的使用指南&#xff0c;并通过代码展示来帮…

设计模式(3)--对象结构(4)--装饰

1. 意图 动态地给一个对象添加一些额外的功能。 2. 四种角色 抽象组件(Component)、具体组件(Concrete Component)、抽象装饰(Decorator)、具体装饰(Concrete Decorator) 3. 优点 3.1 比静态继承更灵活。 3.2 避免在层次结构高层的类有太多的特征。"即用即付"&…

【洛谷算法题】P1424-小鱼的航程(改进版)【入门2分支结构】Java题解

&#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P1424-小鱼的航程&#xff08;改进版&#xff09;【入门2分支结构】&#x1f30f…

程序员必备算法

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…

60.Sentinel源码分析

Sentinel源码分析 1.Sentinel的基本概念 Sentinel实现限流、隔离、降级、熔断等功能&#xff0c;本质要做的就是两件事情&#xff1a; 统计数据&#xff1a;统计某个资源的访问数据&#xff08;QPS、RT等信息&#xff09; 规则判断&#xff1a;判断限流规则、隔离规则、降级规…

Linux下I2C调试工具--for--Zynq MPSOC/Jetson Xavier

Linux下I2C调试工具 1、简介 i2c-tools是一个专门调试i2c的工具&#xff0c;无需编写任何代码即可轻松调试IC设备&#xff0c;可获取挂载的设备及设备地址&#xff0c;还可以在对应的设备指定寄存器设置值或者获取值等功能。i2c-tools有如下几个常用测试命令i2cdetect, i2cdu…

【Go】基于GoFiber从零开始搭建一个GoWeb后台管理系统(四)用户管理、部门管理模块

第一篇&#xff1a;【Go】基于GoFiber从零开始搭建一个GoWeb后台管理系统&#xff08;一&#xff09;搭建项目 第二篇&#xff1a;【Go】基于GoFiber从零开始搭建一个GoWeb后台管理系统&#xff08;二&#xff09;日志输出中间件、校验token中间件、配置路由、基础工具函数。 …

新手运行若依项目|若依项目各部分介绍|并修改自己需要的页面

新手运行若依项目|若依项目各部分介绍|并修改自己需要的页面 文章目录 新手运行若依项目|若依项目各部分介绍|并修改自己需要的页面前言IEDA如何运行若依项目若依项目目录简介ruo-yi common工具类ruoyi-framework 框架核心其他部分ruo一admin后台服务通用配置 application.yml数…

STM32 TIM定时中断设计

单片机学习 目录 文章目录 一、定时器定时中断设计步骤 二、定时器配置 1.RCC开启时钟 2.选择时钟源 3.配置时基单元 4.配置输出中断控制 5.配置NVIC 6.运行控制 三、设计中断函数 总结 一、定时器定时中断设计步骤 定时中断基本框架结构图&#xff1a; 根据结构图可按步骤配置…

AWS RDS慢日志文件另存到ES并且每天发送邮件统计慢日志

1.背景&#xff1a;需要对aws rds慢日志文件归档到es&#xff0c;让开发能够随时查看。 2.需求&#xff1a;并且每天把最新的慢日志&#xff0c;过滤最慢的5条sql 发送给各个产品线的开发负责人。 3.准备&#xff1a; aws ak/sk &#xff0c;如果rds 在不同区域需要认证不同的…

【Linux】进程周边005之环境变量

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.环境变量是什么&#xff1…

工具化法则

《卓越成效的程序员》是若干程序员系列书籍我比较喜欢的一本&#xff0c;类似的还有《卓越程序员密码》等。《卓越成效的程序员》高明之处是不仅仅给出原则&#xff0c;还大谈工具和代码&#xff0c;这如同诸多鸡汤文在”布道”的层面之下实战干货&#xff0c;深得广大从业人员…

使用openMVS库,在VS2022中启用c++17标准编译仍然报错

使用openMVS库&#xff0c;在VS2022中启用c17标准编译仍然报错 现象 项目中引用了某些开源库&#xff08;例如openmvs2.1.0&#xff09;&#xff0c;编译时要求启用编译器对c17的支持。 没问题&#xff01;大家都知道在下图所示的位置调整C语言标准&#xff1a; 但是&#…