Python轴承故障诊断 (六)基于EMD-Transformer的故障分类

目录

前言

1 经验模态分解EMD的Python示例

2 轴承故障数据的预处理

2.1 导入数据

2.2 制作数据集和对应标签

2.3 故障数据的EMD分解可视化

2.4 故障数据的EMD分解预处理

3 基于EMD-Transformer的轴承故障诊断分类

3.1 训练数据、测试数据分组,数据分batch

3.2 定义Transformer分类网络模型

3.3 设置参数,训练模型


往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断 (一)短时傅里叶变换STFT

Python轴承故障诊断 (二)连续小波变换CWT

Python轴承故障诊断 (三)经验模态分解EMD

Python轴承故障诊断 (四)基于EMD-CNN的故障分类

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类

Pytorch-LSTM轴承故障一维信号分类(一)

Pytorch-CNN轴承故障一维信号分类(二)

Pytorch-Transformer轴承故障一维信号分类(三)

前言

本文基于凯斯西储大学(CWRU)轴承数据,进行经验模态分解EMD的介绍与数据预处理,最后通过Python实现EMD-Transformer对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

经验模态分解EMD的原理可以参考如下:   

Python轴承故障诊断 (三)经验模态分解EMD

1 经验模态分解EMD的Python示例

第一步,Python 中 EMD包的下载安装:

# 下载
pip install EMD-signal

# 导入
from PyEMD import EMD

切记,很多同学安装失败,不是 pip install EMD,也不是pip install PyEMD, 如果 pip list 中 已经有 emd,emd-signal,pyemd包的存在,要先 pip uninstall 移除相关包,然后再进行安装。

第二步,导入相关包

import numpy as np
from PyEMD import EMD
impor tmatplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')

第三步,生成一个信号示例

t = np.linspace(0, 1, 1000)
signal = np.sin(11*2*np.pi*t*t) + 6*t*t

第四步,创建EMD对象,进行分解

emd = EMD()
# 对信号进行经验模态分解
IMFs = emd(signal)

第五步,绘制原始信号和每个本征模态函数(IMF)

plt.figure(figsize=(15,10))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(t, signal, 'r')
plt.title("原始信号")

for num, imf in enumerate(IMFs):
    plt.subplot(len(IMFs)+1, 1, num+2)
    plt.plot(t, imf)
    plt.title("IMF "+str(num+1))

plt.show()

2 轴承故障数据的预处理

2.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

2.2 制作数据集和对应标签

第一步, 生成数据集

第二步,制作数据集和标签

# 制作数据集和标签
import torch

# 这些转换是为了将数据和标签从Pandas数据结构转换为PyTorch可以处理的张量,
# 以便在神经网络中进行训练和预测。

def make_data_labels(dataframe):
    '''
        参数 dataframe: 数据框
        返回 x_data: 数据集     torch.tensor
            y_label: 对应标签值  torch.tensor
    '''
    # 信号值
    x_data = dataframe.iloc[:,0:-1]
    # 标签值
    y_label = dataframe.iloc[:,-1]
    x_data = torch.tensor(x_data.values).float()
    y_label = torch.tensor(y_label.values, dtype=torch.int64)  # 指定了这些张量的数据类型为64位整数,通常用于分类任务的类别标签
    return x_data, y_label

# 加载数据
train_set = load('train_set')
val_set = load('val_set')
test_set = load('test_set')

# 制作标签
train_xdata, train_ylabel = make_data_labels(train_set)
val_xdata, val_ylabel = make_data_labels(val_set)
test_xdata, test_ylabel = make_data_labels(test_set)
# 保存数据
dump(train_xdata, 'trainX_1024_10c')
dump(val_xdata, 'valX_1024_10c')
dump(test_xdata, 'testX_1024_10c')
dump(train_ylabel, 'trainY_1024_10c')
dump(val_ylabel, 'valY_1024_10c')
dump(test_ylabel, 'testY_1024_10c')

2.3 故障数据的EMD分解可视化

选择正常信号和 0.021英寸内圈、滚珠、外圈故障信号数据来做对比

第一步,导入包,读取数据

import numpy as np
from scipy.io import loadmat
import numpy as np
from scipy.signal import stft
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')

# 读取MAT文件  
data1 = loadmat('0_0.mat')  # 正常信号
data2 = loadmat('21_1.mat') # 0.021英寸 内圈
data3 = loadmat('21_2.mat') # 0.021英寸 滚珠
data4 = loadmat('21_3.mat') # 0.021英寸 外圈
# 注意,读取出来的data是字典格式,可以通过函数type(data)查看。

第二步,数据集中统一读取 驱动端加速度数据,取一个长度为1024的信号进行后续观察和实验

# DE - drive end accelerometer data 驱动端加速度数据
data_list1 = data1['X097_DE_time'].reshape(-1)
data_list2 = data2['X209_DE_time'].reshape(-1)  
data_list3 = data3['X222_DE_time'].reshape(-1)
data_list4 = data4['X234_DE_time'].reshape(-1)
# 划窗取值(大多数窗口大小为1024)
time_step= 1024
data_list1 = data_list1[0:time_step]
data_list2 = data_list2[0:time_step]
data_list3 = data_list3[0:time_step]
data_list4 = data_list4[0:time_step]

第三步,进行数据可视化

plt.figure(figsize=(20,10))
plt.subplot(2,2,1)
plt.plot(data_list1)
plt.title('正常')
plt.subplot(2,2,2)
plt.plot(data_list2)
plt.title('内圈')
plt.subplot(2,2,3)
plt.plot(data_list3)
plt.title('滚珠')
plt.subplot(2,2,4)
plt.plot(data_list4)
plt.title('外圈')
plt.show()

第四步,首先对正常数据进行EMD分解

import numpy as np
import matplotlib.pyplot as plt
from PyEMD import EMD

t = np.linspace(0, 1, time_step)
data = np.array(data_list1)
# 创建 EMD 对象
emd = EMD()

# 对信号进行经验模态分解
IMFs = emd(data)

# 绘制原始信号和每个本征模态函数(IMF)
plt.figure(figsize=(15,10))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(t, data, 'r')
plt.title("Original signal", fontsize=10)

for num, imf in enumerate(IMFs):
    plt.subplot(len(IMFs)+1, 1, num+2)
    plt.plot(t, imf)
    plt.title("IMF "+str(num+1), fontsize=10)
    # 增加第一排图和第二排图之间的垂直间距
plt.subplots_adjust(hspace=0.4, wspace=0.2)
plt.show()

其次,内圈故障EMD分解:

然后,滚珠故障EMD分解:

最后,外圈故障EMD分解:

注意,在信号的制作过程中,信号长度的选取比较重要,选择信号长度为1024,既能满足信号在时间维度上的分辨率,也能在后续的EMD分解中分解出数量相近的IMF分量,为进一步做故障模式识别打下基础。

2.4 故障数据的EMD分解预处理

对于EMD分解出的IMF分量个数,并不是所有的样本信号都能分解出8个分量,需要做一下定量分析:

import numpy as np
from PyEMD import EMD

# 加载训练集
train_xdata = load('trainX_1024_10c')
data = np.array(train_xdata)

# 创建 EMD 对象
emd = EMD()

print("测试集:", len(data))
count_min = 0
count_max = 0
count_7 = 0
# 对数据进行EMD分解
for i in range(1631):
    imfs = emd(data[i], max_imf=8)  # max_imf=8
    if len(imfs) > 8 :
        count_max += 1
    elif len(imfs) < 7:
        count_min += 1
    elif len(imfs) == 7:
        count_7 += 1

print("分解结果IMF大于8:", count_max)
print("分解结果IMF小于7:", count_min)
print("分解结果IMF等于7:", count_7)

由结果可以看出,大部分信号样本 都分解出8个分量,将近1/3的信号分解的不是8个分量。EMD设置不了分解出模态分量的数量(函数自适应),为了使一维信号分解,达到相同维度的分量特征,有如下3种处理方式:

  • 删除分解分量不统一的样本(少量存在情况可以采用);

  • 对于分量个数少的样本采用0值或者其他方法进行特征填充,使其对齐其他样本分量的维度(向多兼容);

  • 合并分量数量多的信号(向少兼容);

本文采用第二、三条结合的方式进行预处理,即删除分量小于7的样本,对于分量大于7的样本,把多余的分量进行合并,使所有信号的分量特征保持同样的维度。

3 基于EMD-Transformer的轴承故障诊断分类

下面基于EMD分解后的轴承故障数据,通过Transformer的编码器部分进行分类来讲解:

3.1 训练数据、测试数据分组,数据分batch

import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练

# 加载数据集
def dataloader(batch_size, workers=2):
    # 训练集
    train_xdata = load('trainX_1024_10c')
    train_ylabel = load('trainY_1024_10c')
    # 验证集
    val_xdata = load('valX_1024_10c')
    val_ylabel = load('valY_1024_10c')
    # 测试集
    test_xdata = load('testX_1024_10c')
    test_ylabel = load('testY_1024_10c')

    # 加载数据
    train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_xdata, train_ylabel),
                                   batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    val_loader = Data.DataLoader(dataset=Data.TensorDataset(val_xdata, val_ylabel),
                                 batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_xdata, test_ylabel),
                                  batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    return train_loader, val_loader, test_loader

batch_size = 32
# 加载数据
train_loader, val_loader, test_loader = dataloader(batch_size)

3.2 定义Transformer分类网络模型

注意:

  • 输入维度为7, 7个分量

  • 输入形状为 torch.Size([32, 1024, 7])

  • 在PyTorch中,transformer模型的性能与batch_first参数的设置相关,当batch_first为True时,输入的形状应为(batch, sequence, feature),这种设置在某些情况下可以提高推理性能。

在使用Transformer模型中的多头注意力时,输入维度必须能够被num_heads(注意力头的数量)整除。因为在多头注意力机制中,输入的嵌入向量会被分成多个头,每个头的维度是embed_dim / num_heads,因此embed_dim必须能够被num_heads整除,以确保能够均匀地分配给每个注意力头。

因为此时EMD分解分量为7个,可以事先适当改变分量个数,或者对信号进行堆叠,使调整多头注意力头数能够与之对应整除的关系。本文采用对信号进行对半切分堆叠,使输入形状为[32, 14, 512]。

3.3 设置参数,训练模型

100个epoch,准确率将近99%,基于EMD-Transformer的分类模型表现优异,分类准确率要好于EMD-CNN、EMD-LSTM模型,参数量也较少;对比单用Transformer模型,EMD对信号的分解也进一步提升了模型分类准确率,继续调参可以进一步提高模型性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/242809.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

YOLOv8训练好的pt文件如何用来预测

1. 使用原版预测 代码如下&#xff1a; from ultralytics import YOLO# Load a model model YOLO(yolov8n.pt) # load an official model# Predict with the model results model(https://ultralytics.com/images/bus.jpg) # predict on an image命令如下&#xff1a; y…

Go EASY游戏框架 之 RPC Guide 03

1 Overview easy解决服务端通信问题&#xff0c;同样使用了RPC技术。easy使用的ETCDGRPC&#xff0c;直接将它们打包组合在了一起。随着服务发现的成熟&#xff0c;稳定&#xff0c;简单&#xff0c;若是不用&#xff0c;甚至你也并不需要RPC来分解你的架构。 GRPC 有默认res…

产品入门第二讲:Axure产品元件库的使用

&#x1f4da;&#x1f4da; &#x1f3c5;我是默&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; ​​​​ &#x1f31f;在这里&#xff0c;我要推荐给大家我的专栏《Axure》。&#x1f3af;&#x1f3af; &#x1f680;无论你是编程小白&#xff0c;还是…

西南科技大学数字电子技术实验六(智力竞赛抢答器的设计及FPGA实现)预习报告

一、计算/设计过程 说明&#xff1a;本实验是验证性实验&#xff0c;计算预测验证结果。是设计性实验一定要从系统指标计算出元件参数过程&#xff0c;越详细越好。用公式输入法完成相关公式内容&#xff0c;不得贴手写图片。&#xff08;注意&#xff1a;从抽象公式直接得出结…

【Azure 架构师学习笔记】- Azure Databricks (3) - 再次认识DataBricks

本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Databricks】系列。 接上文 【Azure 架构师学习笔记】- Azure Databricks (2) -集群 前言 在对Databricks有了初步了解之后&#xff0c;如果要深入使用则需要对其进行更深层次的了解。 Databricks ADB 是一个统一的…

jdk+zookeeper+kafka 搭建kafka集群

环境资源包&#xff1a; jdk-8u341-linux-x64.tar.gz kafka_2.12-2.2.0.tgz zookeeper-3.4.14.tar.gz 一、安装jdk 因为kafka需要Java环境&#xff0c;所以优先配置jdk环境&#xff0c;若已经配置了java环境&#xff0c;此步骤可以忽略 [rootVM-120-2-centos ~]# tar -xvf j…

在Node.js中使用MongoDB连接数据库、创建集合

本文主要介绍在Node.js中使用MongoDB连接数据库、创建集合的方法。 目录 连接数据库使用原生驱动程序连接MongoDB数据库使用Mongoose连接MongoDB数据库 创建集合使用mongodb驱动程序 连接数据库 在Node.js中使用MongoDB连接数据库有两种方式&#xff1a;使用原生驱动程序和使用…

Redis持久化AOF详解

基础面试题 什么是AOF AOF&#xff08;Append-Only File&#xff09;用于将Redis服务器收到的写操作追加到日志文件&#xff0c;通过该机制可以保证服务器重启后依然可以依靠日志文件恢复数据。 它的工作过程大抵分为以下几步&#xff1a; 收到客户端的写入命令(例如SET、DE…

Hadoop学习总结(Hive的安装)

Hive的安装模式分为3种&#xff0c;分别是嵌入模式、本地模式、远程模式。 &#xff08;1&#xff09;嵌入模式&#xff1a;使用内嵌的 Derby 数据库存储元数据&#xff0c;这种方式是 Hive 的默认安装方式&#xff0c;配置简单&#xff0c;但是一次只能连接一个客户端&#xf…

2023.12.14 hive sql的聚合增强函数 grouping set

目录 1.建库建表 2.需求 3.使用union all来完成需求 4.聚合函数增强 grouping set 5.聚合增强函数cube ,rollup 6.rollup翻滚 7.聚合函数增强 -- grouping判断 1.建库建表 -- 建库 create database if not exists test; use test; -- 建表 create table test.t_cookie(month …

目标检测检测精度

在一个数据集检测中&#xff0c;会产生四类检测结果&#xff1a;TP、TN 、FP 、FN&#xff1a; T ——true 表示正确 F——false 表示错误 P—— positive 表示积极的&#xff0c;看成正例 N——negative 表示消极的&#xff0c;看成负例 我的理解&#xff1a;后面为预测结…

智能优化算法应用:基于象群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于象群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于象群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.象群算法4.实验参数设定5.算法结果6.参考文献7.MA…

C_10练习题答案

一、单项选择题(本大题共 20小题,每小题 2分,共 40分。在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前的字母填写在答题纸的相应位置上。) 1,结构化程序由三种基本结构组成,三种基本结构组成的算法是(A) A.可以完成任何复杂的任务 B.只能完成部分复杂的任务…

【数据结构和算法】压缩字符串

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 方法一&#xff1a;双指针 三、代码 3.1 方法一&#xff1a;双指针 四、复杂度分析 前言 这是力扣…

计网Lesson9 - 链路协议和网络概述

文章目录 数据链路层协议Ethernet V2标准Ethernet V2帧格式Ethernet V2帧长度标准以太网帧 MAC 帧协议 PPP 协议PPP 概述PPP 帧 网络层网络层的设计选择 数据链路层协议 Ethernet V2标准 Ethernet V2帧格式 以太网帧格式说明&#xff1a; 6 6 6 字节目标地址 6 6 6 字节源地…

docker核心原理——unionfs、namespace、cgroup

docker 核心原理 docker的核心原理其实就是cgroupnamespaceunionfs 组合实现的隔离机制&#xff0c;资源控制等。 隔离机制 在容器进程启动之前重新挂载它的整个根⽬录“/”&#xff0c;⽤来为容器提供隔离后的执⾏环境⽂件系统通过Linux Namespace 创建隔离&#xff0c;决…

论文阅读:MonetDB/X100: Hyper-Pipelining Query Execution

目录 Abstract 1 Introduction 1.1 Outline 2 How CPU Work Abstract 在决策支持、OLAP和多媒体检索等计算密集型应用领域&#xff0c;数据库系统往往只能在现代cpu上实现较低的IPC(每周期指令)效率。本文首先以TPC-H基准为重点&#xff0c;深入研究了这种情况发生的原因。…

Debian 系统镜像下载

最近在看一些网络相关的文章需要用到 debian 11.x 的系统网上找了好多都发下载&#xff0c;在官网看一下 有个 11.8 的版本我无法下载&#xff0c;提示被最新的 debian-12.4.0 所代替&#xff0c;于是找到了这个链接 Index of /cdimage/unofficial/non-free/cd-including-fi…

计算机毕业设计 基于Web的城市旅游网站的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

【已解决】ModuleNotFoundError: No module named ‘tensorflow‘

问题描述 Traceback (most recent call last): File "dataset_tool.py", line 16, in <module> import tensorflow as tf ModuleNotFoundError: No module named tensorflow 如果直接pip install tensorflow&#xff0c;还会报错 解决办法 方法一 pip i…