智能优化算法应用:基于象群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于象群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于象群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.象群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用象群算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.象群算法

象群算法原理请参考:https://blog.csdn.net/u011835903/article/details/109135426
象群算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


象群算法参数如下:

%% 设定象群优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明象群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/242791.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C_10练习题答案

一、单项选择题(本大题共 20小题,每小题 2分,共 40分。在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前的字母填写在答题纸的相应位置上。) 1,结构化程序由三种基本结构组成,三种基本结构组成的算法是(A) A.可以完成任何复杂的任务 B.只能完成部分复杂的任务…

【数据结构和算法】压缩字符串

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 方法一:双指针 三、代码 3.1 方法一:双指针 四、复杂度分析 前言 这是力扣…

计网Lesson9 - 链路协议和网络概述

文章目录 数据链路层协议Ethernet V2标准Ethernet V2帧格式Ethernet V2帧长度标准以太网帧 MAC 帧协议 PPP 协议PPP 概述PPP 帧 网络层网络层的设计选择 数据链路层协议 Ethernet V2标准 Ethernet V2帧格式 以太网帧格式说明: 6 6 6 字节目标地址 6 6 6 字节源地…

docker核心原理——unionfs、namespace、cgroup

docker 核心原理 docker的核心原理其实就是cgroupnamespaceunionfs 组合实现的隔离机制,资源控制等。 隔离机制 在容器进程启动之前重新挂载它的整个根⽬录“/”,⽤来为容器提供隔离后的执⾏环境⽂件系统通过Linux Namespace 创建隔离,决…

论文阅读:MonetDB/X100: Hyper-Pipelining Query Execution

目录 Abstract 1 Introduction 1.1 Outline 2 How CPU Work Abstract 在决策支持、OLAP和多媒体检索等计算密集型应用领域,数据库系统往往只能在现代cpu上实现较低的IPC(每周期指令)效率。本文首先以TPC-H基准为重点,深入研究了这种情况发生的原因。…

Debian 系统镜像下载

最近在看一些网络相关的文章需要用到 debian 11.x 的系统网上找了好多都发下载,在官网看一下 有个 11.8 的版本我无法下载,提示被最新的 debian-12.4.0 所代替,于是找到了这个链接 Index of /cdimage/unofficial/non-free/cd-including-fi…

计算机毕业设计 基于Web的城市旅游网站的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…

【已解决】ModuleNotFoundError: No module named ‘tensorflow‘

问题描述 Traceback (most recent call last): File "dataset_tool.py", line 16, in <module> import tensorflow as tf ModuleNotFoundError: No module named tensorflow 如果直接pip install tensorflow&#xff0c;还会报错 解决办法 方法一 pip i…

MSF学习

之前的渗透测试中 其实很少用到 cs msf 但是在实际内网的时候 可以发现 msf cs 都是很好用的 所以现在我来学习一下 msf的使用方法 kali自带msf https://www.cnblogs.com/bmjoker/p/10051014.html 使用 msfconsole 启动即可 首先就是最正常的木马生成 所以这里其实只需…

hive聚合函数之JOIN原理及案例

1.数据准备 原始数据 创建dept.txt文件&#xff0c;并赋值如下内容&#xff0c;上传HDFS。 部门编号 部门名称 部门位置id 10 行政部 1700 20 财务部 1800 30 教学部 1900 40 销售部 1700创建emp.txt文件&#xff0c;并赋值如下内容&#xff0c;上传HDFS。 员工编号 姓名 岗…

es6学习(一):变量声明的方式对比:var,let,const

前言 在let和const出现之前,js可以使用var为变量命令,如果是函数也可以用function命名,甚至你可以直接不用任何关键字命名 var a 1function fn() { }b 2console.log(a)console.log(fn)console.log(b) 结果如下 var的特性 1.window环境下,var在最外层定义的变量会直接赋值给…

jmeter配置使用(mac)

前言 这篇文件就是一个笔记&#xff0c;非mac用户不用看了&#xff0c;我这是换了mac&#xff0c;要用jmeter的倒腾。 一、下载 二、使用步骤 1.解压 tgz格式的直接用tar命令就行 tar -zxvf 包名2.启动 一种是进入解压包的bin目录启动 这种方式启动的就是命令框不能关闭&am…

解决GateWay报错:Exceeded limit on max bytes to buffer : 262144

场景&#xff1a; 前端传来了一个大的字符串 发现请求不通 一番调试发现SpringGateway 默认内存缓冲区262144字节 网上查了很多种常见的解决方案无效之后 直接重写底层 网友的解决方案 方案1&#xff08;无效&#xff09; 直接修改缓冲区大小 spring:codec:max-in-memory-s…

GeoTrust OV证书

当谈到网站安全性和可信度时&#xff0c;GeoTrust OV证书是一个备受推崇的选择。作为一家备受尊敬的数字证书颁发机构&#xff0c;GeoTrust以其卓越的品牌声誉和高质量的产品而闻名于世。GeoTrust OV证书提供了一系列的安全功能&#xff0c;同时还具有出色的性价比&#xff0c;…

Axure元件库的使用

1.基本元件库 1.1Axure的画布范围 Axure是一个绘制项目原型图的软件&#xff0c;它里面的基本原件有&#xff1a; 1.1元件的呈现范围 首先我们要了解基本元件的作用范围在哪里&#xff1f; 浏览效果&#xff1a; 可以看出当我们的基本元件放在画布区域内是可以完全呈现出来…

mac安装pnpm与使用

1、什么是pnpm&#xff1f; pnpm 全称 performant npm&#xff0c;意思是高性能的 npm。pnpm 由 npm/yarn 衍生而来&#xff0c;解决了 npm/yarn 内部潜在的 bug&#xff0c;极大的优化了性能&#xff0c;扩展了使用场景。被誉为 “最先进的包管理工具”。 2、pnpm特点 速度…

2024上海智慧城市展会(世亚智博会)促进长三角地区智慧城市发展

上海市政府近期印发的《上海市进一步推进新型基础设施建设行动方案(2023-2026年)》标志着新一轮新基建的全面启动。市政府副秘书长、市发展改革委主任顾军指出&#xff0c;这一行动方案紧抓智能算力、大模型、数据要素、区块链、机器人等技术发展趋势和绿色低碳节能要求&#x…

textarea 网页文本框在光标处添加内容

在前端研发中我们经常需要使用脚本在文本框中插入内容。如果产品要求不能直接插入开始或者尾部&#xff0c;而是要插入到光标位置&#xff0c;此时我们就需要获取光标/光标选中的位置。 很多时候&#xff0c;我在格式化文本处需要选择选项&#xff0c;将选择的信息输入到光标位…

共建开源新里程:北京航空航天大学OpenHarmony技术俱乐部正式揭牌成立

12月11日,由OpenAtom OpenHarmony(以下简称“OpenHarmony”)项目群技术指导委员会(以下简称“TSC”)和北京航空航天大学共同举办的“OpenHarmony软件工程研讨会暨北京航空航天大学OpenHarmony技术俱乐部成立仪式”在京圆满落幕。 现场大合影 活动当天,多位重量级嘉宾出席了此次…

I2C总线通信(温湿度实验)

1.使能GPIOF时钟 2.将PF14设置为输出&#xff0c;PF15也可以先设置为输出 3.设置输出速度最高档位速度 4.SI7006的初始化 5.读取温度、湿度 6.将读取到的温度湿度数据通过计算公式进行转换 7.将结果输出 main.c #include "si7006.h"extern void printf(cons…