翻译: LLM大语言模型图像生成原理Image generation

文本生成是许多用户正在使用的,也是所有生成式人工智能工具中影响最大的。但生成式人工智能的一部分兴奋点也在于图像生成。目前也开始出现一些可以生成文本或图像的模型,这些有时被称为多模态模型,因为它们可以在多种模式中操作,如文本或图像。在这个视频中,我想与您分享图像生成是如何工作的。
在这里插入图片描述

让我们来看看。只需一个提示,您就可以使用生成式人工智能生成一个从未存在过的人的美丽图片,或者一个未来主义场景的图片,或者像这样一个酷炫的机器人的图片。这项技术是如何工作的呢?今天的图像生成主要是通过一种称为扩散模型的方法完成的。
在这里插入图片描述

扩散模型从互联网或其他地方找到的大量图像中学习。事实证明,扩散模型的核心是监督学习。这是它的工作原理。假设算法在互联网上找到了一个苹果的图片,像这样,它希望从这样的图片和其他数亿张图片中学习如何生成图像。第一步是拿这张图片,逐渐添加越来越多的噪声。你可以从这个漂亮的苹果图片,变成一个更嘈杂的,再到一个更嘈杂的,最后变成一个看起来像纯噪声的图片。所有像素都是随机选择的,一点也不像苹果。然后扩散模型使用这样的图片作为数据,通过监督学习,学会输入一个噪声图片并输出一个稍微清晰一点的图片。具体来说,它会创建一个数据集,其中第一个数据点说如果给出第二张输入图片,我们希望监督学习算法学会输出这个苹果的更清晰版本。这是另一个数据点,给出这第三张更嘈杂的图片,我们希望算法学会输出像这样稍微清晰一点的图片。最后,给出一个像这第四张图片的纯噪声,我们希望它学会输出一个暗示苹果存在的稍微清晰一点的图片。

在经过可能数亿张图片的培训后,像这样的过程,当你想要应用它来生成一张新图片时,这就是你运行它的方式。
在这里插入图片描述

首先是从纯噪声图片开始。首先拍摄一张图片,图片中的每一个像素都是完全随机选择的。然后我们将这张图片输入到我们之前行的监督学习算法中。
在这里插入图片描述
当我们输入纯粹噪声时,它学会从这张图片中去除一点噪声,你可能会得到一张暗示着中间有某种水果的图片,但我们还不确定它是什么。给定第二张图片,我们再次输入到模型中,它会去除更多的噪声,现在看起来我们可以看到一张带有噪声的西瓜图片。

如果你再应用一在这里插入图片描述
次这个过程,我们最终会得到这张第四张图片,看起来像是一张漂亮的西瓜图片。我在前一张幻灯片中用四个步骤说明增加噪声的过程,在这张幻灯片中用四个步骤说明去除噪声的过程。
在这里插入图片描述

但在实践中,扩散模型大概有100个步骤会更典型。这个算法适用于完全随机生成图片。
在这里插入图片描述

但我们想能够通过指定一个提示来控制它生成的图像,告诉它我们想要生成什么。让我描述一下这个算法的修改,让你添加文本或提示来告诉它你想生成什么。在这个训练数据中,我们得到了这样的苹果图片,以及可能生成这个苹果的描述或提示。这里,我有一个文本描述说这是一个红苹果。然后我们会像以前一样,向这张图片中添加噪声,直到得到第四张图像,即纯粹的噪声。但我们要改变构建学习算法的方式,也就是说,不是将稍微嘈杂的图片作为输入,期望它生成一张干净的图片,我们会将输入A给监督学习算法B,这个嘈杂的图片,以及能生成这张图片的文本标题或提示,即红苹果。给定这个输入,我们希望算法输出这张干净的苹果图片。

同样,我们将使用其他嘈杂的图像为算法生成额外的数据点。每次,给定一个嘈杂的图像和文本提示红苹果,我们希望算法学会生成一个红苹果的更清晰的图片。

在这里插入图片描述

在从大量数据集中学习之后,当你想应用这个算法生成比如说绿色香蕉时,这就是你要做的。和以前一样,我们从一张纯粹噪声的图像开始。每一个像素都是完全随机选择的。如果你想生成一个绿色的香蕉,你就把这张纯粹噪声的图片和提示“绿色香蕉”输入到监督学习算法中
在这里插入图片描述

。现在它知道你想要一个绿色的香蕉,希望它会输出这样的图片。看不清楚香蕉,但可能中间有一些建议绿色的水果,这是图像生成的第一步。下一步是,我们将这张右边的图像作为输出B,再次作为输入A,再加上提示“绿色香蕉”,让它生成一张稍微清晰的图片,现在我们清楚地看到,看起来有一个绿色的香蕉,但是相当嘈杂的。
在这里插入图片描述

我们再做一次这个过程,它最终去除了大部分噪声,直到我们得到了那张相当不错的绿色香蕉图片。这就是扩散模型用于生成图像的工作方式。在生成美丽图像的这个神奇过程的核心,再次是监督学习。感谢您坚持观看这个可选视频,期待下周见到您,届时我们将更深入地探讨使用生成AI构建的应用程序。下一个视频见。

参考

https://www.coursera.org/learn/generative-ai-for-everyone/lecture/CQP1v/image-generation-optional

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/240357.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

配置android sudio出现的错误

导入demo工程,配置过程参考: AndroidStudio导入项目的正确方式,修改gradle配置 错误:Namespace not specified. Specify a namespace in the module’s build file. 并定位在下图位置: 原因:Android 大括号…

优雅玩转实验室服务器(二)传输文件

使用服务器最重要的肯定是传输文件了,我们不仅需要本地的一些资源上传到服务器,好进行实验,也需要将服务器计算得到的实验结果传输到本地,来进行预览或者报告撰写。 首先,由于涉及到服务器操作,我强烈推荐…

等保2.0的变化

1法律地位得到确认 《中华人民共和国网络安全法》第21条规定“国家实行网络安全等级保护制度”,要求“网络运营者应当按照网络安全等级保护制度要求,履行安全保护义务”;第31条规定“对于国家关键信息基础设施,在网络安全等级保护…

16ASM 汇编基础与Debug使用

目录 硬件运行机制 微机系统硬件组成 计算机系统组成 8086CPU组织结构 DoxBox安装 Debug使用 R命令 D命令 E命令 U命令 T命令 A命令 标志寄存器 常用机器指令 硬件运行机制 下面是一个电子器件二极管,正向加电则通,反向加电则不通 利用二…

MySQL索引_什么是索引_索引的分类_什么时候需要/不需要创建索引_优化索引_索引失效

文章目录 索引1. 什么是索引2. 索引的分类按数据结构分类按物理存储分类按字段特性分类按字段个数分类 3. 什么时候需要 / 不需要创建索引?什么时候适用索引?什么时候不需要创建索引? 4. 优化索引的方法前缀索引优化覆盖索引优化主键索引最好…

spring 笔记一 spring快速入门和配置文件详解

Spring简介 Spring是分层的 Java SE/EE应用full-stack 轻量级开源框架,以 IoC(Inverse Of Control:反转控制)和AOP(Aspect Oriented Programming:面向切面编程)为内核。 提供了展现层SpringMV…

基于PaddleNLP的深度学习对文本自动添加标点符号(一)

前言 目前以深度学习对文本自动添加标点符号研究很少,已知的开源项目并不多,详细的介绍就更少了,但对文本自动添加标点符号又在古文识别语音识别上有重大应用。 基于此,本文开始讲解基于PaddleNLP的深度学习对文本自动添加标点符号…

c语言注册登录+实验室物帐管理系统

实验室物帐管理系统:用户手册 1引言 本用户手册旨在为实验室物帐管理系统的使用提供指导和帮助。该系统旨在实现以下功能:仪器设备条目的输入、仪器设备的借还以及库存情况查询及修改。通过本手册,您将了解到如何正确使用该系统&#xff0c…

2023 Visual Studio Code年度十佳深色主题

2023 Visual Studio Code年度十佳深色主题 Top Ten Dark-styled Themes on Visual Studio Code in 2023 By JacksonML Microsoft Visual Studio Code(以下简称:VS Code)是微软公司开发的一款开放源代码的集成开发环境(IDE), 自问世以来&…

蓝牙在物联网中的应用,相比WIFI和NFC的优势?

蓝牙在物联网中有着广泛的应用,主要包括以下几个方面: 1、智能家居:蓝牙Mesh技术可以用于智能家居设备之间的连接和通信,实现设备的远程控制和管理。例如,通过蓝牙技术可以将智能音箱、智能电视、智能家电等设备连接起…

【深度学习】强化学习(六)基于值函数的学习方法

文章目录 一、强化学习问题1、交互的对象2、强化学习的基本要素3、策略(Policy)4、马尔可夫决策过程5、强化学习的目标函数6、值函数7、深度强化学习 二、基于值函数的学习方法 一、强化学习问题 强化学习的基本任务是通过智能体与环境的交互学习一个策略…

QT 基础篇

目录 QPushButton QT帮助文档 QT 对象树 QPushButton QPushButton是Qt图形界面控件中的一种,看英文的意思,他就是按钮,是最基本的图形控件之一。在我们的最基本的项目中,运行: 是一个空白的窗体,里面什么也没有&am…

亚马逊云科技:向量数据存储在生成式人工智能应用程序中的作用

生成式人工智能深受大众喜爱,并且由于具备回答问题、写故事、创作艺术品甚至生成代码的功能,推动了行业的转变,那么如何才能在自己的企业中充分地利用生成式人工智能等应运而生问题。许多客户已经积累了大量特定领域的数据(财务记…

设计模式—观察者模式

观察者模式(Observer Pattern)是一种行为型设计模式,它定义了一种一对多的依赖关系,使得当一个对象的状态发生变化时,所有依赖于它的对象都会得到通知并自动更新。 在观察者模式中,有两个核心角色&#xf…

智能优化算法应用:基于布谷鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于布谷鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于布谷鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.布谷鸟算法4.实验参数设定5.算法结果6.参考文…

go-libp2p-example-chat学习

1.案例下载 https://github.com/libp2p/go-libp2p/tree/master/examples 2.chat案例 这段代码是一个简单的基于libp2p的P2P聊天应用程序的示例。它允许两个节点通过P2P连接进行聊天。前提是: 两者都有私有IP地址(同一网络)。至少其中一个…

1.了解数据结构和算法

1.了解数据结构和算法 1.1 二分查找 二分查找(Binary Search)是一种在有序数组中查找特定元素的搜索算法。它的基本思想是将数组分成两半,然后比较目标值与中间元素的大小关系,从而确定应该在左半部分还是右半部分继续查找。这个…

java系列-HashMap遍历

1.遍历例子 import java.util.HashMap; import java.util.Iterator; import java.util.Map;public class HashMapTraversalExample {public static void main(String[] args) {HashMap<String, Integer> hashMap new HashMap<>();hashMap.put("A", 1);…

解决:WARNING: Ignoring invalid distribution -ip (d:\python37\lib\site-packages)

解决&#xff1a;WARNING: Ignoring invalid distribution -ip (d:\python37\lib\site-packages) 文章目录 解决&#xff1a;WARNING: Ignoring invalid distribution -ip (d:\python37\lib\site-packages)背景报错问题报错翻译报错位置代码报错原因解决方法今天的分享就到此结…

kafka配置多个消费者groupid kafka多个消费者消费同一个partition(java)

目录 1- 单播模式&#xff0c;只有一个消费者组2- 广播模式&#xff0c;多个消费者组3- Java实践 kafka是由Apache软件基金会开发的一个开源流处理平台。kafka是一种高吞吐量的分布式发布订阅消息系统&#xff0c;它可以处理消费者在网站中的所有动作流数据。 kafka中partition…