16ASM 汇编基础与Debug使用

目录

硬件运行机制

微机系统硬件组成

计算机系统组成

8086CPU组织结构

DoxBox安装

Debug使用

R命令

D命令

E命令

U命令

T命令

A命令

标志寄存器

常用机器指令


硬件运行机制

下面是一个电子器件二极管,正向加电则通,反向加电则不通

利用二极管的这个特性可以得到下面的门电路,这些电路可以进行与、或、非运算

在计算机底层,加减乘除的运算就是有这三种运算构成的

所有的数学运算都可以由位运算组成。那么更高级的数学运算也可以通过简单的位运算计算。所以将常用运算封装成一个器件,称之为单元。

用法

机器码:类似111111000010101010B,可以用来控制硬件的二进制数据,叫做机器码。

助记符:二进制值难记,每种功能的二进制控制码取一个容易记住的名字,叫做助记符,也称之为指令 例如,00B - add            01B - sub            10B - xor

汇编:助记符硬件不能识别,需要将其转换成对应的机器码,这个过程叫做汇编。

微机系统硬件组成

一个系统不可能由一个硬件单独完成,所以划分出多个硬件模块, 然后由一个硬件模块居中调度,称作cpu(centeral processing unit)。

单片机系统实物

IO桥:所有的硬件模块连接到I/O桥,由I/O桥负责辅助cpu与哪一个硬件模块连接。

总线:cpu有8位数据/地址线,ram是个256byte的存储器。

计算机系统组成

计算机分层示意图

程序 hello.c 到可执行文件

加载可执行文件

执行

8086CPU组织结构

8086CPU架构如下图:

EU部件:1. 执行部件(excution unit) 2. 译码    3. 执行指令

BIU部件:1. 总线接口部件(bus interface unit) 2. 取指令     3. 读取数据       4. 写入数据

寄存器

流水线处理

问题:8086cpu将指令的执行分成多个模块,有什么好处?

答案:流水线,可以多个部件同时工作,提高硬件的利用率,从而提高效率。

在8086 CPU架构下,串行处理和流水线处理是两种不同的指令处理方式。

  1. 串行处理: 串行处理是指在执行指令时,逐条顺序地执行指令。当一条指令执行完成后,才能开始执行下一条指令。这种处理方式的特点是简单直观,易于理解和调试,但效率相对较低。因为在串行处理中,指令之间存在时钟周期的间隔,导致CPU的运行效率受限。8086 CPU在早期的时候主要采用串行处理方式。

  2. 流水线处理: 流水线处理是指将指令处理过程划分为多个阶段,并在不同阶段同时执行不同的指令。每个阶段负责完成指定的任务,然后将结果传递给下一个阶段。这样可以实现多个指令的并行处理,提高CPU的执行效率。流水线处理利用了指令的部分并行性,有效地利用了CPU资源。8086 CPU在后期引入了流水线处理的技术,提高了指令的执行速度。

在8086 CPU中,流水线处理主要包括以下几个阶段:

  • 取指令阶段(Instruction Fetch):从内存中读取指令,并将其存储在指令缓存中。
  • 译码阶段(Instruction Decode):对取得的指令进行解码,确定指令的操作类型和操作数。
  • 执行阶段(Execution):根据指令的类型执行相应的操作,比如算术运算、逻辑运算等。
  • 存储阶段(Memory Access):若指令需要访问内存或外设,则在此阶段进行数据的读取或写入。
  • 写回阶段(Write Back):将执行结果写回寄存器或内存。

效率:流水线处理 > 串行处理

弊端:当跳转到总线使用的时候,此时已经取得一部分指令,并且已经译码了。那么此时这部分将清空,从头操作。类似于goto语句。

DoxBox安装

运行安装程序后一路Next即可,安装完成

dosbox是个模拟器,并没有计算机的磁盘信息,需要访问磁盘的办法是将 虚拟机磁盘映射到物理机磁盘

dosbox安装目录:双击DOSBox 0.74 Options.bat文件,弹出配置信息,在最后末尾行加上如下:

mount C D:\debug\MASM
mount D D:\debug\Test
set path=C:
d:

把DOSBOX的C盘挂载到D:\debug\MASM,D盘挂载到D:\debug\Test,并设置全局变量

D:\debug\MASM下载以下工具:

D:\debug\Test是工作目录, 新建一个记事本,命名为hello.txt,将下面的程序复制进去,并保存

;80x86<new>
DSEG    SEGMENT
MESS    DB      'Hello,World!',0DH,0AH,24H
DSEG    ENDS

SSEG    SEGMENT PARA STACK
        DW  256 DUP(?)
SSEG    ENDS

CSEG    SEGMENT
        ASSUME  CS:CSEG,DS:DSEG
BEGIN:  MOV AX,DSEG
        MOV DS,AX
        MOV DX,OFFSET MESS
        MOV AH,9

        INT 21H
        MOV AH,4CH
        INT 21H
CSEG    ENDS
        END  BEGIN

编译:masm hello.asm

链接: link hello.obj

运行: hello.exe 

在执行时会得到一些中间产物的文件

  • .obj(Object File):这是编译器生成的目标文件,包含了汇编程序的机器码和相关符号信息。目标文件是可重定位的,即可以与其他目标文件链接以生成可执行文件。
  • .lst(Listing File):这是汇编程序的汇编列表文件,包含了源代码和对应的汇编和机器码指令的对应关系。列表文件通常用于调试和分析程序,可以了解每条指令的地址、十六进制表示以及与源代码的对应关系。
  • .map(Map File):这是一个链接器生成的映射文件,记录了程序的内存布局、符号表、段地址等信息。映射文件可以帮助程序员了解程序的内存使用情况和地址分配情况。
  • .pdb(Program Database File):这是调试信息数据库文件,包含了与源代码对应的调试信息,用于在调试器中进行源代码级别的调试。.pdb文件通常与可执行文件一起使用。

基本DOS命令

#cd\ ——首先要用cd\ 退回到根目录C>下
#dir ——显示文件列表
#md hb ——建立hb子目录
#cd hb ——进入hb子目录
#copy d:\dos\masm.exe c:\hb ——将D盘dos目录下的masm.exe拷贝到C盘hb目录下
#copy d:\dos\link.exe c:\hb ——将D盘dos目录下的link.exe拷贝到C盘hb目录下
#cd .. ——退回到上一级目录
#del \hb\masm.exe ——删除hb子目录中的某文件
#rd hb ——删除hb子目录(子目录中的所有文件必须先删除)
#e:——进入e盘
#cls ——清屏
#type——显示文本文件内容(如type c:\hb\abc.asm)

Debug使用

debug是微软公司出品的调试工具,非常好用,可以调试0环和3环,目前市面上的大多数只能调试3环,虽然好用,但是由于界面和操作环境的原因,所以用的人不多。

作用:深入机器内部观察,修改观察寄存器等值的内容。

Debug基本功能:

  • R命令:查看、改变CPU寄存器的内容
  • D命令:查看内存中的内容
  • E命令:改写内存中的内容
  • U命令:将内存中的机器指令翻译成汇编指令
  • T命令:执行一条机器指令
  • A命令:以汇编指令的格式在内存中写入一条机器指令
  • Q命令:退出

R命令

查看CPU寄存器的内容【R】

修改寄存器中的值【R 寄存器】

D命令

查看内存中的内容【D 段地址:偏移地址】

指定范围查看内存中的内容【D 段地址:起始偏移地址 结尾偏移地址】

D命令输出内容可以分为三部分:

左侧为每行的内存单元起始地址

中间为128个内存单元的内容,用十六进制的格式输出

右侧为每个内存单元中的数据对应的可显示的ASCII码字符

使用“d 段地址:偏移地址”格式的D命令,Debug会列出从指定内存单元开始的128个内存单元的内容

再使用“d 段地址:偏移地址”之后,接着使用D命令,可列出后续的内容

使用“d 段地址:起始偏移地址 结尾偏移地址”格式可指定范围来查看内存中的内容

E命令

修改内存中的内容【E 段地址:偏移地址】

一次性修改多个内存中的内容【E 段地址:偏移地址 值1 值2 ......】

值1是字符或字符串时,会自动转成ASCII码

“E 段地址:偏移地址”格式,Debug会以提问的方式来逐个修改从此地址开始的内存单元中的内容

Debug显示10000H处的原内容11,可以在“.”后输入新内容(结束按Enter,继续修改下一个单元内容按Space)

可使用【E 段地址:偏移地址 值1 值2 ......】来一次性修改多个内存中的内容

U命令

将内存中的机器指令翻译成汇编指令【U 段地址:偏移地址】

U命令的显示输出分为三部分:

  • 左侧为机器指令的地址
  • 中间为机器指令
  • 右侧为机器指令所对应的汇编指令

T命令

执行一条或多条指令【T】

执行的命令为CS:IP指向的指令

执行T命令后,CPU执行CS:IP指向的指令,指令执行后,Debug显示输出CPU寄存器的状态

A命令

以汇编指令的形式在内存写入机器指令【A 段地址:偏移地址】

Debug会将这些汇编指令翻译成对应的机器指令,将它们的机器码写入内存,在给出的起始地址后面直接按Enter键表示操作结束

标志寄存器

条件标志:

  • CF 进位标志:用于反映运算是否产生进位或借位。如果运算结果的最高位产生一个进位或借位,则CF置1,否则置0。运算结果的最高位包括字操作的第15位和字节操作的第7位。移位指令也会将操作数的最高位或最低位移入CF。
  • PF 奇偶标志:用于反映运算结果低8位中“1”的个数。“1”的个数为偶数,则PF置1,否则置0。
  • AF 辅助进位标志算数操作结果的第三位(从0开始计数)如果产生了进位或者借位则将其置为1,否则置为0,常在BCD(binary-codedecimal)算术运算中被使用。
  • ZF 零标志:用于判断结果是否为0。运算结果0,ZF置1,否则置0。
  • SF 符号标志:用于反映运算结果的符号,运算结果为负,SF置1,否则置0。因为有符号数采用补码的形式表示,所以SF与运算结果的最高位相同。
  • OF 溢出标志:反映有符号数加减运算是否溢出。如果运算结果超过了8位或者16位有符号数的表示范围,则OF置1,否则置0。

控制标志:

  • TF 跟踪标志:当TF被设置为1时,CPU进入单步模式,所谓单步模式就是CPU在每执行一步指令后都产生一个单步中断。主要用于程序的调试。8086/8088中没有专门用来置位和清零TF的命令,需要用其他办法。
  • IF 中断标志:决定CPU是否响应外部可屏蔽中断请求。IF为1时,CPU允许响应外部的可屏蔽中断请求。
  • DF 方向标志:决定串操作指令执行时有关指针寄存器调整方向。当DF为1时,串操作指令按递减方式改变有关存储器指针值,每次操作后使SI、DI递减。

在(cmd debug)调试程序中为了使标志位的值显尔易见,他提供用符号表示标志位的值:

注意:

  • 进位针对的是无符号数运算,溢出针对的是有符号数运算。
  • 当看成无符号数,则关注CF标志,看成有符号数,则关注OF标志。

常用机器指令

mov reg, reg
mov reg, imm;(立即数,常数)
mov ax, 5566
mov al, 78
    
add reg1,reg2 两个值相加,值存入第一个值里
add ax,bx;	ax = ax + bx
add ax,123; ax = ax + 1234
add 123,ax 	123 = 123 + ax ;  Error

sub 与之相反
 cmp ax,bx 
    如果(ax)=(bx), 则 zf=1 
    如果(ax)!=(bx), 则 zf=0 
    如果(ax)<(bx), 则 cf=1 
    如果(ax)>=(bx), 则 cf=0 
    如果(ax)>(bx), 则 cf=0且zf=0 
    如果(ax)<=(bx), 则 cf=1或zf=1 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/240353.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL索引_什么是索引_索引的分类_什么时候需要/不需要创建索引_优化索引_索引失效

文章目录 索引1. 什么是索引2. 索引的分类按数据结构分类按物理存储分类按字段特性分类按字段个数分类 3. 什么时候需要 / 不需要创建索引&#xff1f;什么时候适用索引&#xff1f;什么时候不需要创建索引&#xff1f; 4. 优化索引的方法前缀索引优化覆盖索引优化主键索引最好…

spring 笔记一 spring快速入门和配置文件详解

Spring简介 Spring是分层的 Java SE/EE应用full-stack 轻量级开源框架&#xff0c;以 IoC&#xff08;Inverse Of Control&#xff1a;反转控制&#xff09;和AOP&#xff08;Aspect Oriented Programming&#xff1a;面向切面编程&#xff09;为内核。 提供了展现层SpringMV…

基于PaddleNLP的深度学习对文本自动添加标点符号(一)

前言 目前以深度学习对文本自动添加标点符号研究很少&#xff0c;已知的开源项目并不多&#xff0c;详细的介绍就更少了&#xff0c;但对文本自动添加标点符号又在古文识别语音识别上有重大应用。 基于此&#xff0c;本文开始讲解基于PaddleNLP的深度学习对文本自动添加标点符号…

c语言注册登录+实验室物帐管理系统

实验室物帐管理系统&#xff1a;用户手册 1引言 本用户手册旨在为实验室物帐管理系统的使用提供指导和帮助。该系统旨在实现以下功能&#xff1a;仪器设备条目的输入、仪器设备的借还以及库存情况查询及修改。通过本手册&#xff0c;您将了解到如何正确使用该系统&#xff0c…

2023 Visual Studio Code年度十佳深色主题

2023 Visual Studio Code年度十佳深色主题 Top Ten Dark-styled Themes on Visual Studio Code in 2023 By JacksonML Microsoft Visual Studio Code&#xff08;以下简称&#xff1a;VS Code&#xff09;是微软公司开发的一款开放源代码的集成开发环境(IDE), 自问世以来&…

蓝牙在物联网中的应用,相比WIFI和NFC的优势?

蓝牙在物联网中有着广泛的应用&#xff0c;主要包括以下几个方面&#xff1a; 1、智能家居&#xff1a;蓝牙Mesh技术可以用于智能家居设备之间的连接和通信&#xff0c;实现设备的远程控制和管理。例如&#xff0c;通过蓝牙技术可以将智能音箱、智能电视、智能家电等设备连接起…

【深度学习】强化学习(六)基于值函数的学习方法

文章目录 一、强化学习问题1、交互的对象2、强化学习的基本要素3、策略&#xff08;Policy&#xff09;4、马尔可夫决策过程5、强化学习的目标函数6、值函数7、深度强化学习 二、基于值函数的学习方法 一、强化学习问题 强化学习的基本任务是通过智能体与环境的交互学习一个策略…

QT 基础篇

目录 QPushButton QT帮助文档 QT 对象树 QPushButton QPushButton是Qt图形界面控件中的一种&#xff0c;看英文的意思&#xff0c;他就是按钮&#xff0c;是最基本的图形控件之一。在我们的最基本的项目中&#xff0c;运行: 是一个空白的窗体&#xff0c;里面什么也没有&am…

亚马逊云科技:向量数据存储在生成式人工智能应用程序中的作用

生成式人工智能深受大众喜爱&#xff0c;并且由于具备回答问题、写故事、创作艺术品甚至生成代码的功能&#xff0c;推动了行业的转变&#xff0c;那么如何才能在自己的企业中充分地利用生成式人工智能等应运而生问题。许多客户已经积累了大量特定领域的数据&#xff08;财务记…

设计模式—观察者模式

观察者模式&#xff08;Observer Pattern&#xff09;是一种行为型设计模式&#xff0c;它定义了一种一对多的依赖关系&#xff0c;使得当一个对象的状态发生变化时&#xff0c;所有依赖于它的对象都会得到通知并自动更新。 在观察者模式中&#xff0c;有两个核心角色&#xf…

智能优化算法应用:基于布谷鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于布谷鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于布谷鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.布谷鸟算法4.实验参数设定5.算法结果6.参考文…

go-libp2p-example-chat学习

1.案例下载 https://github.com/libp2p/go-libp2p/tree/master/examples 2.chat案例 这段代码是一个简单的基于libp2p的P2P聊天应用程序的示例。它允许两个节点通过P2P连接进行聊天。前提是&#xff1a; 两者都有私有IP地址&#xff08;同一网络&#xff09;。至少其中一个…

1.了解数据结构和算法

1.了解数据结构和算法 1.1 二分查找 二分查找&#xff08;Binary Search&#xff09;是一种在有序数组中查找特定元素的搜索算法。它的基本思想是将数组分成两半&#xff0c;然后比较目标值与中间元素的大小关系&#xff0c;从而确定应该在左半部分还是右半部分继续查找。这个…

java系列-HashMap遍历

1.遍历例子 import java.util.HashMap; import java.util.Iterator; import java.util.Map;public class HashMapTraversalExample {public static void main(String[] args) {HashMap<String, Integer> hashMap new HashMap<>();hashMap.put("A", 1);…

解决:WARNING: Ignoring invalid distribution -ip (d:\python37\lib\site-packages)

解决&#xff1a;WARNING: Ignoring invalid distribution -ip (d:\python37\lib\site-packages) 文章目录 解决&#xff1a;WARNING: Ignoring invalid distribution -ip (d:\python37\lib\site-packages)背景报错问题报错翻译报错位置代码报错原因解决方法今天的分享就到此结…

kafka配置多个消费者groupid kafka多个消费者消费同一个partition(java)

目录 1- 单播模式&#xff0c;只有一个消费者组2- 广播模式&#xff0c;多个消费者组3- Java实践 kafka是由Apache软件基金会开发的一个开源流处理平台。kafka是一种高吞吐量的分布式发布订阅消息系统&#xff0c;它可以处理消费者在网站中的所有动作流数据。 kafka中partition…

光学遥感显著目标检测初探笔记总结

目录 观看地址介绍什么是显著性目标检测根据不同的输入会有不同的变体(显著性目标检测家族)目前这个领域的挑战 技术方案论文1(2019)论文2(2021)论文3(2022) 未来展望 观看地址 b站链接 介绍 什么是显著性目标检测 一张图片里最吸引注意力的部分就是显著性物体&#xff0c;…

【Stable Diffusion】在windows环境下部署并使用Stable Diffusion Web UI---By Conda

文章目录 一、Stable Diffusion介绍二、本地部署stable diffusion2.1 安装所需依赖环境2.1.1 安装CUDA2.1.2 安装显卡驱动2.1.3 安装Conda2.1.4 安装git工具--gitForWindows2.1.5 检查环境 2.2 配置Transformer环境变量2.3 安装SD WebUI2.4 安装SD WebUI过程中遇到的问题 三、 …

指针浅谈(三)

在指针浅谈(二)http://t.csdnimg.cn/SKAkD中我们讲到了const修饰指针、指针运算、野指针、assert断言和传址调用的内容&#xff0c;今天我们继续学习有关数组名、指针访问数组、一维数组传参的本质相关的内容&#xff0c;内容比较深入&#xff0c;如果觉得哪里讲解的不行&#…

Java EE 多线程之线程安全的集合类

文章目录 1. 多线程环境使用 ArrayList1. 1 Collections.synchronizedList(new ArrayList)1.2 CopyOnWriteArrayList 2. 多线程环境使用队列2.1 ArrayBlockingQueue2.2 LinkedBlockingQueue2.3 PriorityBlockingQueue2.4 TransferQueue 3. 多线程环境使用哈希表3.1 Hashtable3.…