1.了解数据结构和算法

1.了解数据结构和算法

1.1 二分查找

        二分查找(Binary Search)是一种在有序数组中查找特定元素的搜索算法。它的基本思想是将数组分成两半,然后比较目标值与中间元素的大小关系,从而确定应该在左半部分还是右半部分继续查找。这个过程不断重复,直到找到目标值或确定它不存在于数组中。

1.1.1 二分查找的实现

(1)循环条件使用 "i <= j" 而不是 "i < j" 是因为,在二分查找的过程中,我们需要同时更新 i 和 j 的值。当 i 和 j 相等时,说明当前搜索范围只剩下一个元素,我们需要检查这个元素是否是我们要找的目标值。如果这个元素不是我们要找的目标值,那么我们可以确定目标值不存在于数组中。

如果我们将循环条件设置为 "i < j",那么当 i 和 j 相等时,我们就无法进入循环来检查这个唯一的元素,这会导致我们无法准确地判断目标值是否存在。

因此,在二分查找的循环条件中,我们应该使用 "i <= j",以确保我们在搜索范围内包含所有可能的元素。

(2)如果你使用 "i + j / 2" 来计算二分查找的中间值,可能会遇到整数溢出的问题。这是因为在 Java 中,整数除法(/)对整数操作时会向下取整,结果仍然是一个整数。例如,如果 ij 都是很大的数,且它们相加结果大于 Integer.MAX_VALUE(即 2^31 - 1),那么直接将它们相加再除以 2 就会导致溢出,因为中间结果已经超出了 int 类型的最大值(会变成负数)。

public static void main(String[] args) {
         int[]arr={1,22,33,55,88,99,117,366,445,999};
        System.out.println(binarySearch( arr,1));//结果:0
        System.out.println(binarySearch( arr,22));//结果:1
        System.out.println(binarySearch( arr,33));//结果:2
        System.out.println(binarySearch( arr,55));//结果:3
        System.out.println(binarySearch( arr,88));//结果:4
        System.out.println(binarySearch( arr,99));//结果:5
        System.out.println(binarySearch( arr,117));//结果:6
        System.out.println(binarySearch( arr,366));//结果:7
        System.out.println(binarySearch( arr,445));//结果:8
        System.out.println(binarySearch( arr,999));//结果:9
        System.out.println(binarySearch( arr,1111));//结果:-1
        System.out.println(binarySearch( arr,-1));//结果:-1

    }
    /**
     * @Description
     * @Author LY
     * @Param [arr, target] 待查找升序数组,查找的值
     * @return int 找到返回索引,找不到返回-1
     * @Date 2023/12/8 16:38
     **/


    
    public static int binarySearch(int[] arr, int target){
        //设置 i跟j 初始值
        int i=0;
        int j= arr.length-1;
        //如果i>j,则表示并未找到该值
        while (i<=j){
            int m=(i+j)>>>1;
//            int m=(i+j)/2;
            if (target<arr[m]){
                //目标在左侧
                j=m-1;
            }else if(target>arr[m]){
                //目标在右侧
                i=m+1;
            }else{
                //相等
                return m;
            }
        }
        return -1;
    }

 1.1.2 二分查找改动版

        方法 binarySearchAdvanced 是一个优化版本的二分查找算法。它将数组范围从 0 到 arr.length 进行划分(改动1),并且在循环条件中使用 i < j 而不是 i <= j (改动2)。这种修改使得当目标值不存在于数组中时,可以更快地结束搜索。此外,在向左移动右边界时,只需将其设置为中间索引 m 而不是 m - 1 (改动3)。

        这些改动使 binarySearchAdvanced 在某些情况下可能比标准二分查找更快。然而,在实际应用中,这些差异通常很小,因为二分查找本身的复杂度已经很低(O(log n))。

/**
     * @return int 找到返回索引,找不到返回-1
     * @Description 二分查找改动版
     * @Author LY
     * @Param [arr, target] 待查找升序数组,查找的值
     * @Date 2023/12/8 16:38
     **/


    public static int binarySearchAdvanced(int[] arr, int target) {
        int i = 0;
//        int j= arr.length-1;
        int j = arr.length;//改动1
//        while (i<=j){
        while (i < j) {//改动2
            int m = (i + j) >>> 1;
            if (target < arr[m]) {
//                j = m - 1;
                j = m; //改动3
            } else if (arr[m] < target) {
                i = m + 1;
            } else {
                return m;
            }
        }
        return -1;
    }

 1.2 线性查找

        线性查找(Linear Search)是一种简单的搜索算法,用于在无序数组或列表中查找特定元素。它的基本思想是从数组的第一个元素开始,逐一比较每个元素与目标值的大小关系,直到找到目标值或遍历完整个数组。

(1)初始化一个变量 index 为 -1,表示尚未找到目标值。
(2)从数组的第一个元素开始,使用循环依次访问每个元素:
(3)如果当前元素等于目标值,则将 index 设置为当前索引,并结束循环。

(4)返回 index。(如果找到了目标值返回其索引;否则返回 -1 表示未找到目标值)

 /**
     * @return int 找到返回索引,找不到返回-1
     * @Description 线性查找
     * @Author LY
     * @Param [arr, target] 待查找数组(可以不是升序),查找的值
     * @Date 2023/12/8 16:38
     **/


    public static int LinearSearch(int[] arr, int target) {
        int index=-1;
        for (int i = 0; i < arr.length; i++) {
            if(arr[i]==target){
                index=i;
                break;
            }
        }
        return index;
    }

1.3 衡量算法第一因素

时间复杂度:算法在最坏情况下所需的基本操作次数与问题规模之间的关系。

1.3.1 对比

假设每行代码执行时间都为t,数据为n个,且是最差的执行情况(执行最多次):

二分查找:

二分查找执行时间为:5L+4:
既5*floor(log_2(x)+1)+4
执行语句执行次数
int i=0;1
int j=arr.length-1;1
return -1;1
循环次数为:floor(log_2(n))+1,之后使用L代替
i<=j;L+1
int m= (i+j)>>>1;L
artget<arr[m]L
arr[m]<artgetL
i=m+1;L

线性查找:

线性查找执行时间为:3x+3
执行语句执行次数
int i=0;1
i<a.length;x+1
i++;x
arr[i]==targetx
return -1;1

对比工具:Desmos | 图形计算器

对比结果:

随着数据规模增加,线性查找执行时间会逐渐超过二分查找。

1.3.2 时间复杂度

        计算机科学中,时间复杂度是用来衡量一个算法的执行,随着数据规模增大,而增长的时间成本(不依赖与环境因素)。

时间复杂度的标识:

        假设要出炉的数据规模是n,代码总执行行数用f(n)来表示:

                线性查找算法的函数:f(n)=3*n+3。

                二分查找算法函数::f(n)=5*floor(log_2(x)+1)+4。

为了简化f(n),应当抓住主要矛盾,找到一个变化趋势与之相近的表示法。

1.3.3 渐进上界

渐进上界代表算法执行的最差情况:

        以线性查找法为例:

                f(n)=3*n+3

                g(n)=n

        取c=4,在n0=3后,g(n)可以作为f(n)的渐进上界,因此大O表示法写作O(n)

        以二分查找为例:

                5*floor(log_2(n)+1)+4===》5*floor(log_2(n))+9

                g(n)=log_2(n)

                O(log_2(n))

1.3.4 常见大O表示法

按时间复杂度,从低到高:

(1)黑色横线O(1):常量时间复杂度,意味着算法时间并不随数据规模而变化。

(2)绿色O(log(n)):对数时间复杂度。

(3)蓝色O(n):线性时间复杂度,算法时间与规模与数据规模成正比。

(4)橙色O(n*log(n)):拟线性时间复杂度。

(5)红色O(n^2):平方时间复杂度。

(6)黑色向上O(2^n):指数时间复杂度。

(7)O(n!):这种时间复杂度非常大,通常意味着随着输入规模 n 的增加,算法所需的时间会呈指数级增长。因此,具有 O(n!) 时间复杂度的算法在实际应用中往往是不可行的,因为它们需要耗费大量的计算资源和时间。

1.4 衡量算法第二因素

空间复杂度:与时间复杂度类似,一般也用O衡量,一个算法随着数据规模增大,而增长的额外空间成本。

1.3.1 对比

以二分查找为例:

二分查找占用空间为:4字节
执行语句执行次数
int i=0;4字节
int j=arr.length-1;4字节
int m= (i+j)>>>1;4字节
二分查找占用空间复杂度为:O(1)

性能分析:

        时间复杂度:

                最坏情况:O(log(n))。

                最好情况:待查找元素在数组中央,O(1)。

        空间复杂度:需要常熟个数指针:i,j,m,额外占用空间是O(1)。

1.5 二分查找改进

在之前的二分查找算法中,如果数据在数组的最左侧,只需要执行L次 if 就可以了,但是如果数组在最右侧,那么需要执行L次 if 以及L次 else if,所以二分查找向左寻找元素,比向右寻找元素效率要高。

(1)左闭右开的区间,i指向的可能是目标,而j指向的不是目标。

(2)不在循环内找出,等范围内只剩下i时,退出循环,再循环外比较arr[i]与target。

(3)优点:循环内的平均比较次数减少了。

(4)缺点:时间复杂度:θ(log(n))。

1.6 二分查找相同元素

1.6.1 返回最左侧

当有两个数据相同时,上方的二分查找只会返回中间的元素,而我们想得到最左侧元素就需要对算法进行改进。(Leftmost)

 public static void main(String[] args) {
        int[] arr = {1, 22, 33, 55, 99, 99, 99, 366, 445, 999};
        System.out.println(binarySearchLeftMost1(arr, 99));//结果:4
        System.out.println(binarySearchLeftMost1(arr, 999));//结果:9
        System.out.println(binarySearchLeftMost1(arr, 998));//结果:-1


    }
    /**
     * @return int 找到相同元素返回返回最左侧查找元素索引,找不到返回-1
     * @Description 二分查找LeftMost
     * @Author LY
     * @Param [arr, target] 待查找升序数组,查找的值
     * @Date 2023/12/8 16:38
     **/
    public static int binarySearchLeftMost1(int[] arr, int target) {
        int i = 0;
        int j = arr.length - 1;
        int candidate = -1;
        while (i <= j) {
            int m = (i + j) >>> 1;
            if (target < arr[m]) {
                j = m - 1;
            } else if (arr[m] < target) {
                i = m + 1;
            } else {
//                return m;  查找到之后记录下来
                candidate=m;
                j=m-1;
            }
        }
        return candidate;
    }

1.6.2 返回最右侧

当有两个数据相同时,上方的二分查找只会返回中间的元素,而我们想得到最右侧元素就需要对算法进行改进。(Rightmost)

​

    public static void main(String[] args) {
        int[] arr = {1, 22, 33, 55, 99, 99, 99, 366, 445, 999};
        System.out.println(binarySearchRightMost1(arr, 99));//结果:6
        System.out.println(binarySearchRightMost1(arr, 999));//结果:9
        System.out.println(binarySearchRightMost1(arr, 998));//结果:-1


    }
    /**
     * @return int 找到相同元素返回返回最右侧侧查找元素索引,找不到返回-1
     * @Description 二分查找RightMost
     * @Author LY
     * @Param [arr, target] 待查找升序数组,查找的值
     * @Date 2023/12/8 16:38
     **/
    public static int binarySearchRightMost1(int[] arr, int target) {
        int i = 0;
        int j = arr.length - 1;
        int candidate = -1;
        while (i <= j) {
            int m = (i + j) >>> 1;
            if (target < arr[m]) {
                j = m - 1;
            } else if (arr[m] < target) {
                i = m + 1;
            } else {
//                return m;  查找到之后记录下来
                candidate=m;
                i = m + 1;
            }
        }
        return candidate;
    }

​

1.6.3 优化

将leftMost优化后,可以在未找到目标值的情况下,返回大于等于目标值最靠左的一个索引。

/**
     * @return int 找到相同元素返回返回最左侧查找元素索引,找不到返回i
     * @Description 二分查找LeftMost
     * @Author LY
     * @Param [arr, target] 待查找升序数组,查找的值
     * @Date 2023/12/8 16:38
     **/
    public static int binarySearchLeftMost2(int[] arr, int target) {
        int i = 0;
        int j = arr.length - 1;
        while (i <= j) {
            int m = (i + j) >>> 1;
            if (target <= arr[m]) {
                j = m - 1;
            } else {
                i = m + 1;
            }
        }
        return i;
    }

将rightMost优化后,可以在未找到目标值的情况下,返回小于等于目标值最靠右的一个索引。

1.6.4 应用场景

1.6.4.1 查排名

(1)查找排名:
        在执行二分查找时,除了返回目标值是否存在于数组中,还可以记录查找过程中遇到的目标值的位置。如果找到了目标值,则直接返回该位置作为排名;如果没有找到目标值,但知道它应该插入到哪个位置才能保持数组有序,则可以返回这个位置作为排名。

         leftMost(target)+1
(2)查找前任(前驱):
        如果目标值在数组中存在,并且不是数组的第一个元素,那么其前任就是目标值左边的一个元素。我们可以在找到目标值之后,再调用一次二分查找函数,这次查找的目标值设置为比当前目标值小一点的数。这样就可以找到目标值左侧最接近它的元素,即前任。

         leftMost(target)-1
(3)查找后任(后继):
        如果目标值在数组中存在,并且不是数组的最后一个元素,那么其后任就是目标值右边的一个元素。类似地,我们可以在找到目标值之后,再调用一次二分查找函数,这次查找的目标值设置为比当前目标值大一点的数。这样就可以找到目标值右侧最接近它的元素,即后任。

         rightMost(target)+1

(3)最近邻居:

        前任和后任中,最接近目标值的一个元素。

1.6.4.2 条件查找元素

(1)小于某个值:0 ~ leftMost(target)-1

(2)小于等于某个值:0 ~ rightMost(target)

(3)大于某个值:rightMost(target)+1 ~ 无穷大

(4)大于等于某个值:leftMost(4) ~ 无穷大

(5)他们可以组合使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/240332.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java系列-HashMap遍历

1.遍历例子 import java.util.HashMap; import java.util.Iterator; import java.util.Map;public class HashMapTraversalExample {public static void main(String[] args) {HashMap<String, Integer> hashMap new HashMap<>();hashMap.put("A", 1);…

解决:WARNING: Ignoring invalid distribution -ip (d:\python37\lib\site-packages)

解决&#xff1a;WARNING: Ignoring invalid distribution -ip (d:\python37\lib\site-packages) 文章目录 解决&#xff1a;WARNING: Ignoring invalid distribution -ip (d:\python37\lib\site-packages)背景报错问题报错翻译报错位置代码报错原因解决方法今天的分享就到此结…

kafka配置多个消费者groupid kafka多个消费者消费同一个partition(java)

目录 1- 单播模式&#xff0c;只有一个消费者组2- 广播模式&#xff0c;多个消费者组3- Java实践 kafka是由Apache软件基金会开发的一个开源流处理平台。kafka是一种高吞吐量的分布式发布订阅消息系统&#xff0c;它可以处理消费者在网站中的所有动作流数据。 kafka中partition…

光学遥感显著目标检测初探笔记总结

目录 观看地址介绍什么是显著性目标检测根据不同的输入会有不同的变体(显著性目标检测家族)目前这个领域的挑战 技术方案论文1(2019)论文2(2021)论文3(2022) 未来展望 观看地址 b站链接 介绍 什么是显著性目标检测 一张图片里最吸引注意力的部分就是显著性物体&#xff0c;…

【Stable Diffusion】在windows环境下部署并使用Stable Diffusion Web UI---By Conda

文章目录 一、Stable Diffusion介绍二、本地部署stable diffusion2.1 安装所需依赖环境2.1.1 安装CUDA2.1.2 安装显卡驱动2.1.3 安装Conda2.1.4 安装git工具--gitForWindows2.1.5 检查环境 2.2 配置Transformer环境变量2.3 安装SD WebUI2.4 安装SD WebUI过程中遇到的问题 三、 …

指针浅谈(三)

在指针浅谈(二)http://t.csdnimg.cn/SKAkD中我们讲到了const修饰指针、指针运算、野指针、assert断言和传址调用的内容&#xff0c;今天我们继续学习有关数组名、指针访问数组、一维数组传参的本质相关的内容&#xff0c;内容比较深入&#xff0c;如果觉得哪里讲解的不行&#…

Java EE 多线程之线程安全的集合类

文章目录 1. 多线程环境使用 ArrayList1. 1 Collections.synchronizedList(new ArrayList)1.2 CopyOnWriteArrayList 2. 多线程环境使用队列2.1 ArrayBlockingQueue2.2 LinkedBlockingQueue2.3 PriorityBlockingQueue2.4 TransferQueue 3. 多线程环境使用哈希表3.1 Hashtable3.…

QT----第三天,Visio stdio自定义封装控件

目录 第三天1 自定义控件封装 源码&#xff1a;CPP学习代码 第三天 1 自定义控件封装 新建一个QT widgetclass&#xff0c;同时生成ui,h,cpp文件 在smallWidget.ui里添加上你想要的控件并调试大小 回到mainwidget.ui&#xff0c;拖入一个widget&#xff08;因为我们封装的也…

jemeter,断言:响应断言、Json断言

一、响应断言 接口A请求正常返回值如下&#xff1a; {"status": 10013, "message": "user sign timeout"} 在该接口下创建【响应断言】元件&#xff0c;配置如下&#xff1a; 若断言成功&#xff0c;则查看结果树的接口显示绿色&#xff0c;若…

maui 开发音乐播放APP 优化(2)

界面改为&#xff1a; 音量可以调整 。同时当前状态 显示。以及播放音乐.视频有时可以自动播放有时候要手动。 界面代码 <?xml version"1.0" encoding"utf-8" ?> <ContentPage xmlns"http://schemas.microsoft.com/dotnet/2021/maui&quo…

MySQL的事务以及springboot中如何使用事务

事务的四大特性&#xff1a; 概念&#xff1a; 事务 是一组操作的集合&#xff0c;它是不可分割的工作单元。事务会把所有操作作为一个整体&#xff0c;一起向系统提交或撤销操作请求&#xff0c;即这些操作要么同时成功&#xff0c;要么同时失败。 注意&#xff1a; 默认MySQ…

最新UI酒桌喝酒游戏小程序源码,直接上传源码到开发者端即可,带流量主

源码介绍&#xff1a; 2023最新UI酒桌喝酒游戏小程序源码 娱乐小程序源码 带流量主.修改增加了广告位&#xff0c;直接上传源码到开发者端即可。 通过后改广告代码&#xff0c;然后关闭广告展示提交&#xff0c;通过后打开即可。无广告引流。 流量主版本的&#xff08;配合流…

proteus元件合集(一)

LCD LM018L​​ 绿色的LCD寻找方法&#xff1a; 直流电压源 直流电压源寻找方法&#xff1a; 滑动变阻器 滑动变阻器寻找方法&#xff1a; 注意&#xff1a;它出来之后会自动出现那两个红色的。那是电源。

崩坏:星穹铁道【V1.5攻略】五星(金)-遗器主、副词条成长数值参考

星穹铁道中五星遗器词条成长数值攻略&#xff1a; 温馨提示&#xff1a;以下数据会可能会出现一点一点误差&#xff0c;见谅... --------------------------- 一、如图&#xff1a; ----->>细节补充<<----- ①实际数值可能与游戏中不一&#xff0c;若数据出现无法忽…

详解Java中的异常体系结构(throw,throws,try-catch,finally,自定义异常)

目录 一.异常的概念 二.异常的体系结构 三.异常的处理 异常处理思路 LBYL&#xff1a;Look Before You Leap EAFP: Its Easier to Ask Forgiveness than Permission 异常抛出throw 异常的捕获 提醒声明throws try-catch捕获处理 finally的作用 四.自定义异常类 一.异…

深入理解亚信安慧AntDB-T数据库子计划的执行流程

概要&#xff1a; SQL语句在执行时会转换为执行计划&#xff0c;若其中包含了子查询或子链接并且不能被优化&#xff0c;则执行计划会生成子计划&#xff08;查看AntDB的执行计划时看到标记为SubPlan[1] 的部分即为子计划&#xff09;。在整个AntDB数据库中&#xff0c;子计划…

现代C++ 实现单例模式

传统写法有什么问题 如果你了解过单例模式&#xff0c;双重检查锁定模式&#xff08;Double-Checked Locking Pattern&#xff0c;后文简称DCLP&#xff09;的写法你一定不会陌生&#xff0c;甚至你或许认为它是最正确的代码。 class Singleton { public://获取单例Singleton…

MySQL 8.x temp空间不足问题

目录 一、系统环境 二、问题报错 三、问题回顾 四、解决问题 一、系统环境 系统Ubuntu20.04 数据库版本MySQL 8.0.21 二、问题报错 在MySQL上执行一个大的SQL查询报错Error writing file /tmp/MYfd142 (OS errno 28 - No space left on device) Exception in thread …

用C语言实现链队列的基本操作

不多解释&#xff0c;直接上代码&#xff0c;代码已经写了注释&#xff01; //队列链式结构的基本操作&#xff1a; #define _CRT_SECURE_NO_WARNINGS 1 #include<stdio.h> #include<stdlib.h> typedef int QueueElememtType; typedef struct QNode//链队的定义 {…

什么是蜘蛛池,蜘蛛池是什么蚂蚁SEO

蜘蛛池是一种通过大量模拟真实用户行为来提升网站搜索引擎排名的技术。这种技术利用大量的网络爬虫程序&#xff0c;模拟搜索引擎蜘蛛的爬行行为&#xff0c;通过大量的模拟爬行和页面抓取&#xff0c;提高网站的权重和排名。 如何联系蚂蚁seo&#xff1f; baidu搜索&#xf…