图解transformer中的自注意力机制(备忘)

注意力机制

在整个注意力过程中,模型会学习了三个权重:查询、键和值。查询、键和值的思想来源于信息检索系统。所以我们先理解数据库查询的思想。

假设有一个数据库,里面有所有一些作家和他们的书籍信息。现在我想读一些Rabindranath写的书:

在数据库中,作者名字类似于键,图书类似于值。查询的关键词Rabindranath是这个问题的键。所以需要计算查询和数据库的键(数据库中的所有作者)之间的相似度,然后返回最相似作者的值(书籍)。

同样,注意力有三个矩阵,分别是查询矩阵(Q)、键矩阵(K)和值矩阵(V)。它们中的每一个都具有与输入嵌入相同的维数。模型在训练中学习这些度量的值。

我们可以假设我们从每个单词中创建一个向量,这样我们就可以处理信息。对于每个单词,生成一个512维的向量。所有3个矩阵都是512x512(因为单词嵌入的维度是512)。对于每个标记嵌入,我们将其与所有三个矩阵(Q, K, V)相乘,每个标记将有3个长度为512的中间向量。

接下来计算分数,它是查询和键向量之间的点积。分数决定了当我们在某个位置编码单词时,对输入句子的其他部分的关注程度。

然后将点积除以关键向量维数的平方根。这种缩放是为了防止点积变得太大或太小(取决于正值或负值),因为这可能导致训练期间的数值不稳定。选择比例因子是为了确保点积的方差近似等于1。

然后通过softmax操作传递结果。这将分数标准化:它们都是正的,并且加起来等于1。softmax输出决定了我们应该从不同的单词中获取多少信息或特征(值),也就是在计算权重。

这里需要注意的一点是,为什么需要其他单词的信息/特征?因为我们的语言是有上下文含义的,一个相同的单词出现在不同的语境,含义也不一样。

最后一步就是计算softmax与这些值的乘积,并将它们相加。

可视化图解

上面逻辑都是文字内容,看起来有一些枯燥,下面我们可视化它的矢量化实现。这样可以更加深入的理解。

查询键和矩阵的计算方法如下

同样的方法可以计算键向量和值向量。

最后计算得分和注意力输出。

简单代码实现

import torch
import torch.nn as nn
from typing import List

def get_input_embeddings(words: List[str], embeddings_dim: int):
# we are creating random vector of embeddings_dim size for each words
# normally we train a tokenizer to get the embeddings.
# check the blog on tokenizer to learn about this part
embeddings = [torch.randn(embeddings_dim) for word in words]
return embeddings


text = "I should sleep now"
words = text.split(" ")
len(words) # 4


embeddings_dim = 512 # 512 dim because the original paper uses it. we can use other dim also
embeddings = get_input_embeddings(words, embeddings_dim=embeddings_dim)
embeddings[0].shape # torch.Size([512])


# initialize the query, key and value metrices
query_matrix = nn.Linear(embeddings_dim, embeddings_dim)
key_matrix = nn.Linear(embeddings_dim, embeddings_dim)
value_matrix = nn.Linear(embeddings_dim, embeddings_dim)
query_matrix.weight.shape, key_matrix.weight.shape, value_matrix.weight.shape # torch.Size([512, 512]), torch.Size([512, 512]), torch.Size([512, 512])


# query, key and value vectors computation for each words embeddings
query_vectors = torch.stack([query_matrix(embedding) for embedding in embeddings])
key_vectors = torch.stack([key_matrix(embedding) for embedding in embeddings])
value_vectors = torch.stack([value_matrix(embedding) for embedding in embeddings])
query_vectors.shape, key_vectors.shape, value_vectors.shape # torch.Size([4, 512]), torch.Size([4, 512]), torch.Size([4, 512])


# compute the score
scores = torch.matmul(query_vectors, key_vectors.transpose(-2, -1)) / torch.sqrt(torch.tensor(embeddings_dim, dtype=torch.float32))
scores.shape # torch.Size([4, 4])


# compute the attention weights for each of the words with the other words
softmax = nn.Softmax(dim=-1)
attention_weights = softmax(scores)
attention_weights.shape # torch.Size([4, 4])


# attention output
output = torch.matmul(attention_weights, value_vectors)
output.shape # torch.Size([4, 512])

以上代码只是为了展示注意力机制的实现,并未优化。

多头注意力

上面提到的注意力是单头注意力,在原论文中有8个头。对于多头和单多头注意力计算相同,只是查询(q0-q3),键(k0-k3),值(v0-v3)中间向量会有一些区别。

之后将查询向量分成相等的部分(有多少头就分成多少)。在上图中有8个头,查询,键和值向量的维度为512。所以就变为了8个64维的向量。

把前64个向量放到第一个头,第二组向量放到第二个头,以此类推。在上面的图片中,我只展示了第一个头的计算。

这里需要注意的是:不同的框架有不同的实现方法,pytorch官方的实现是上面这种,但是tf和一些第三方的代码中是将每个头分开计算了,比如8个头会使用8个linear(tf的dense)而不是一个大linear再拆解。还记得Pytorch的transformer里面要求emb_dim能被num_heads整除吗,就是因为这个

使用哪种方式都可以,因为最终的结果都类似影响不大。

当我们在一个head中有了小查询、键和值(64 dim的)之后,计算剩下的逻辑与单个head注意相同。最后得到的64维的向量来自每个头。

我们将每个头的64个输出组合起来,得到最后的512个dim输出向量。

多头注意力可以表示数据中的复杂关系。每个头都能学习不同的模式。多个头还提供了同时处理输入表示的不同子空间(本例:64个向量表示512个原始向量)的能力。

多头注意代码实现

num_heads = 8
# batch dim is 1 since we are processing one text.
batch_size = 1

text = "I should sleep now"
words = text.split(" ")
len(words) # 4


embeddings_dim = 512
embeddings = get_input_embeddings(words, embeddings_dim=embeddings_dim)
embeddings[0].shape # torch.Size([512])


# initialize the query, key and value metrices
query_matrix = nn.Linear(embeddings_dim, embeddings_dim)
key_matrix = nn.Linear(embeddings_dim, embeddings_dim)
value_matrix = nn.Linear(embeddings_dim, embeddings_dim)
query_matrix.weight.shape, key_matrix.weight.shape, value_matrix.weight.shape # torch.Size([512, 512]), torch.Size([512, 512]), torch.Size([512, 512])


# query, key and value vectors computation for each words embeddings
query_vectors = torch.stack([query_matrix(embedding) for embedding in embeddings])
key_vectors = torch.stack([key_matrix(embedding) for embedding in embeddings])
value_vectors = torch.stack([value_matrix(embedding) for embedding in embeddings])
query_vectors.shape, key_vectors.shape, value_vectors.shape # torch.Size([4, 512]), torch.Size([4, 512]), torch.Size([4, 512])


# (batch_size, num_heads, seq_len, embeddings_dim)
query_vectors_view = query_vectors.view(batch_size, -1, num_heads, embeddings_dim//num_heads).transpose(1, 2)
key_vectors_view = key_vectors.view(batch_size, -1, num_heads, embeddings_dim//num_heads).transpose(1, 2)
value_vectors_view = value_vectors.view(batch_size, -1, num_heads, embeddings_dim//num_heads).transpose(1, 2)
query_vectors_view.shape, key_vectors_view.shape, value_vectors_view.shape
# torch.Size([1, 8, 4, 64]),
# torch.Size([1, 8, 4, 64]),
# torch.Size([1, 8, 4, 64])


# We are splitting the each vectors into 8 heads.
# Assuming we have one text (batch size of 1), So we split
# the embedding vectors also into 8 parts. Each head will
# take these parts. If we do this one head at a time.
head1_query_vector = query_vectors_view[0, 0, ...]
head1_key_vector = key_vectors_view[0, 0, ...]
head1_value_vector = value_vectors_view[0, 0, ...]
head1_query_vector.shape, head1_key_vector.shape, head1_value_vector.shape


# The above vectors are of same size as before only the feature dim is changed from 512 to 64
# compute the score
scores_head1 = torch.matmul(head1_query_vector, head1_key_vector.permute(1, 0)) / torch.sqrt(torch.tensor(embeddings_dim//num_heads, dtype=torch.float32))
scores_head1.shape # torch.Size([4, 4])


# compute the attention weights for each of the words with the other words
softmax = nn.Softmax(dim=-1)
attention_weights_head1 = softmax(scores_head1)
attention_weights_head1.shape # torch.Size([4, 4])

output_head1 = torch.matmul(attention_weights_head1, head1_value_vector)
output_head1.shape # torch.Size([4, 512])


# we can compute the output for all the heads
outputs = []
for head_idx in range(num_heads):
head_idx_query_vector = query_vectors_view[0, head_idx, ...]
head_idx_key_vector = key_vectors_view[0, head_idx, ...]
head_idx_value_vector = value_vectors_view[0, head_idx, ...]
scores_head_idx = torch.matmul(head_idx_query_vector, head_idx_key_vector.permute(1, 0)) / torch.sqrt(torch.tensor(embeddings_dim//num_heads, dtype=torch.float32))

softmax = nn.Softmax(dim=-1)
attention_weights_idx = softmax(scores_head_idx)
output = torch.matmul(attention_weights_idx, head_idx_value_vector)
outputs.append(output)

[out.shape for out in outputs]
# [torch.Size([4, 64]),
# torch.Size([4, 64]),
# torch.Size([4, 64]),
# torch.Size([4, 64]),
# torch.Size([4, 64]),
# torch.Size([4, 64]),
# torch.Size([4, 64]),
# torch.Size([4, 64])]

# stack the result from each heads for the corresponding words
word0_outputs = torch.cat([out[0] for out in outputs])
word0_outputs.shape

# lets do it for all the words
attn_outputs = []
for i in range(len(words)):
attn_output = torch.cat([out[i] for out in outputs])
attn_outputs.append(attn_output)
[attn_output.shape for attn_output in attn_outputs] # [torch.Size([512]), torch.Size([512]), torch.Size([512]), torch.Size([512])]


# Now lets do it in vectorize way.
# We can not permute the last two dimension of the key vector.
key_vectors_view.permute(0, 1, 3, 2).shape # torch.Size([1, 8, 64, 4])


# Transpose the key vector on the last dim
score = torch.matmul(query_vectors_view, key_vectors_view.permute(0, 1, 3, 2)) # Q*k
score = torch.softmax(score, dim=-1)


# reshape the results
attention_results = torch.matmul(score, value_vectors_view)
attention_results.shape # [1, 8, 4, 64]

# merge the results
attention_results = attention_results.permute(0, 2, 1, 3).contiguous().view(batch_size, -1, embeddings_dim)
attention_results.shape # torch.Size([1, 4, 512])

总结

注意力机制(attention mechanism)是Transformer模型中的重要组成部分。Transformer是一种基于自注意力机制(self-attention)的神经网络模型,广泛应用于自然语言处理任务,如机器翻译、文本生成和语言模型等。本文介绍的自注意力机制是Transformer模型的基础,在此基础之上衍生发展出了各种不同的更加高效的注意力机制,所以深入了解自注意力机制,将能够更好地理解Transformer模型的设计原理和工作机制,以及如何在具体的各种任务中应用和调整模型。这将有助于你更有效地使用Transformer模型并进行相关研究和开发。

原文出处,入侵吾删

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/239353.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2. 如何通过公网IP端口映射访问到设备的vmware虚拟机的ubuntu服务器

文章目录 1. 主机设备是Windows 11系统2. 安装vmware虚拟机3. 创建ubuntu虚拟机(据说CentOS 7 明年就不维护了,就不用这个版本的linux了)4. 安装nginx服务:默认端口805. 安装ssh服务:默认端口226. 设置主机 -> ubuntu的端口映射7. 设置路由…

ReentrantLock详解

介绍 它是可重入锁的互斥锁,又被称为“独占锁”。它在同一时间点只能被一个线程锁持有;可重入表示,ReentrantLock锁可被同一个线程多次获取。它是通过一个FIFO的等待队列来管理获取该锁所有线程的。在“公平锁”的机制下,线程依次…

MySQL笔记-第08章_聚合函数

视频链接:【MySQL数据库入门到大牛,mysql安装到优化,百科全书级,全网天花板】 文章目录 第08章_聚合函数1. 聚合函数介绍1.1 AVG和SUM函数1.2 MIN和MAX函数1.3 COUNT函数 2. GROUP BY2.1 基本使用2.2 使用多个列分组2.3 GROUP BY中…

理解排序算法:冒泡排序、选择排序与归并排序

简介: 在计算机科学中,排序算法是基础且重要的概念。本文将介绍三种常见的排序方法:冒泡排序、选择排序和归并排序。我们将探讨它们的工作原理、特点和适用场景,以帮助读者更好地理解和选择合适的排序方法。 冒泡排序 冒泡排序是…

cs环境部署

配置搭建cs工具 两种方式 cs工具 》狐狸工具箱,微信上搜索 或者cs - OneDrive (sharepoint.com)提取密码www.ddosi.org 需要云服务器(个人猜测如果是靶场的话,可以采用一台所有主机都能访问的主机作为服务端配置) 非docker方式搭建 将c…

ue5材质预览界面ue 变黑

发现在5.2和5.1上都有这个bug 原因是开了ray tracing引起的,这个bug真是长时间存在,类似的bug还包括草地上奇怪的影子和地形上的影子等等 解决方法也很简单,就是关闭光追(不是…… 就是关闭预览,在材质界面preview sc…

10基于matlab的悬臂梁四节点/八节点四边形单元有限元编程(平面单元)

悬臂梁,有限元编程。基于matlab的悬臂梁四节点/八节点四边形单元有限元编程(平面单元),程序有详细注解,可根据需要更改参数,包括长度、截面宽度和高度、密度、泊松比、均布力、集中力、单元数量等。需要就拍…

【算法】递归、搜索与回溯算法

文章目录 一. 名词解释1. 递归1.1 什么是递归?1.2 为什么会用到递归?1.3 如何理解递归?1.4 如何写好一个递归? 2. 遍历和搜索3. 回溯和剪枝 二. 递归系列专题1. 汉诺塔问题2. 合并两个有序链表3. 反转链表4. 两两交换链表中的节点…

关于Anaconda的安装和环境部署(此章专为新手制定)

目录 Anaconda简介 一、软件下载(地址👇) 2:点击下载 3:版本选择: 4:Anaconda的安装包就下载完成了 2:恭喜你,看到这里已经完成安装了 三、部署环境 1&#xff1…

什么是 AWS IAM?如何使用 IAM 数据库身份验证连接到 Amazon RDS(上)

驾驭云服务的安全环境可能很复杂,但 AWS IAM 为安全访问管理提供了强大的框架。在本文中,我们将探讨什么是 AWS Identity and Access Management (IAM) 以及它如何增强安全性。我们还将提供有关使用 IAM 连接到 Amazon Relational Database Service (RDS…

C++类模板分文件编写

问题: 类模板中成员函数创建时机是在调用阶段,导致分文件编写时链接不到 解决: 解决方式最常用的:将声明和实现写到同一个文件,并更改后缀名为.hpp,hpp是约定的名称,并不是强制的

Windows/Linux混合刻录后,Windows显示空白盘解决思路

概述 因为工作环境问题,需要在Windows和Linux之间来回光盘刻录,没有多余光盘的时候经常多次使用,同一光盘在Windows刻录文件到Linux,然后从Linux刻录文件到Windows,Windows用“类似U盘”格式化的光盘,在Wi…

洛谷 P8802 [蓝桥杯 2022 国 B] 出差

文章目录 [蓝桥杯 2022 国 B] 出差题目链接题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示 思路解析CODE [蓝桥杯 2022 国 B] 出差 题目链接 https://www.luogu.com.cn/problem/P8802 题目描述 A \mathrm{A} A 国有 N N N 个城市,编号为 1 … N …

三天精通Selenium Web 自动化 - Selenium(Java)环境搭建

1 下载JDK JDK下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 2 安装和配置JDK 安装目录尽量不要有空格 D:\Java\jdk1.8.0_91; D:\Java\jre8设置环境变量: “我的电脑”->右键->“属性”->…

LeetCode刷题日志-73矩阵置零

思路一: 用一个同样大小的矩阵记录0的位置,然后遍历矩阵置0, 空间复杂度为O(mn) class Solution {public void setZeroes(int[][] matrix) {int [][] matrix_new new int[matrix.length][matrix[0].length];for(int …

postgresql自带指令命令系列三

目录 简介 bin目录 28.pg_verifybackup 29.pg_waldump 30.postgres 31.postmaster -> postgres 32.psql 33.reindexdb 34.vacuumdb 35.vacuumlo 总结: 简介 在安装postgresql数据库的时候会需要设置一个关于postgresql数据库的PATH变量 export PATH/…

1845_emacs中一个中文乱码问题分析解决

Grey 全部学习内容汇总:GitHub - GreyZhang/editors_skills: Summary for some common editor skills I used. 1845_emacs中一个中文乱码问题分析解决 曾经有一次放弃过我自己的emacs配置,一个原因就是中文的支持。感觉我的配置跟其他人的配置显得有些…

优雅玩转实验室服务器(一)登录服务器

这篇文章更加偏向于使用python程序进行研究的朋友们 原料 Windows主机实验室Linux服务器(可以访问互联网)一点点耐心 step.0 windows terminal is all you need 别跟我说什么putty,什么winscp,我就是单推Win11自带的软件——win…

deepface:实现人脸的识别和分析

deepface介绍 deepface能够实现的功能 人脸检测:deepface 可以在图像中检测出人脸的位置,为后续的人脸识别任务提供基础。 人脸对齐:为了提高识别准确性,deepface 会将检测到的人脸进行对齐操作,消除姿态、光照和表…

Python 进阶(十六):二进制和ASCII码的转换(binascii 模块)

大家好,我是水滴~~ 本文详细介绍了Python中的binascii模块及其使用方法。通过binascii模块,我们可以方便地进行二进制和ASCII字符串之间的转换操作。文章中包含大量的示例代码,希望能够帮助新手同学快速入门。 《Python入门核心技术》专栏总…