deepface:实现人脸的识别和分析

deepface介绍

deepface能够实现的功能

人脸检测:deepface 可以在图像中检测出人脸的位置,为后续的人脸识别任务提供基础。

人脸对齐:为了提高识别准确性,deepface 会将检测到的人脸进行对齐操作,消除姿态、光照和表情等因素对识别结果的影响。

特征提取:deepface 使用卷积神经网络(CNN)对齐后的人脸图像进行特征提取,将人脸转换为高维特征向量。

人脸识别:通过比较特征向量之间的相似度,deepface 可以识别出图像中的人脸是否属于同一个人。

人脸验证:deepface 可以用于人脸验证任务,即判断给定的两张人脸图像是否属于同一个人。

人脸搜索:deepface 可以在大型人脸数据库中搜索特定人物,通过比较特征向量找到与目标人物最相似的人脸。

人脸跟踪:deepface 可以在视频序列中跟踪人脸,实现实时的人脸识别和分析。

人脸年龄分析:deepface 可以估计图像中的人脸年纪。

人脸表情识别:deepface 可以估计图像中的人脸表情。

人种识别:deepface 可以识别出图像中的人脸属于什么人种。

性别分析:deepface 可以识别出图像中的人脸是什么性别。

deepface功能的具体实现

1.人脸识别:识别两个人人脸是否属于同一个人

api:

各个参数的含义如下:

img1_path 和 img2_path:就是两张图片的路径,当然除了路径,还可以是 numpy 数组或 base64 字符串。verify 函数会将图像上的人脸部分表示为向量,然后计算相似度。如果其中一张图片出现了多张脸,比如 img1_path 里面有一张脸,但 img2_path 里面有三张脸,那么每一张脸都会进行比对,找到最相似的那一个。

model_name:deepface 已经集成了大量顶尖的人脸模型用于训练,比如:

"VGG-Face"、"OpenFace"、"Facenet"、"Facenet512"、"DeepFace"、"DeepID" "Dlib"、"ArcFace"、"SFace"、"Emotion"、"Age"、"Gender"、"Race"

喜欢哪个就用哪个,但是模型需要下载,如果 deepface 检测到当前机器上没有指定的模型,那么会自动下载。所以当前第一次执行上面代码的时候,会下载 VGG-Face 模型(大小有好几百 M)。关于这些模型的区别,有兴趣可以自己了解一下,我们直接使用默认的即可。

detector_backend:检测器后端,负责提供人脸识别算法,因为 deepface 所使用的算法是由其它模块提供的,默认是 opencv。但除了 opencv 之外,还有其它选择。

"opencv", "retinaface", "mtcnn", "ssd", "dlib", "mediapipe"

这些人脸检测器之间的区别,还是很重要的,我们来解释一下。

  • "opencv":最轻量级的人脸检测器,使用不基于深度学习技术的 haar-cascade 算法,因此速度很快,但准确率较低。而为了使 OpenCV 正常工作,需要正面图像,如果脸侧了一下或者局部发生遮挡,准确率就会受到影响。此外也不擅长对眼睛的检测,容易导致对齐问题。目前 DeepFace 使用的默认检测器就是 OpenCV。
  • "dlib":该检测器在后台使用 hog 算法,与 OpenCV 类似,它也不是基于深度学习的,但它的检测和对齐分数相对较高。
  • "ssd":单次检测器,它是一种流行的基于深度学习的检测器,但性能可与 OpenCV 相媲美。只是 SSD 不支持面部特征点,并且依赖于 OpenCV 的眼睛检测模块来对齐,因此尽管其检测性能很高,但对准分数仅为平均水平。
  • "mtcnn":基于深度学习的人脸检测器,并带有面部特征点,所以它的检测和对齐得分都很高但是,但速度比 OpenCV,SSD 和 Dlib 慢。另外 MTCNN 是一种多任务级联卷积神经网络的人脸检测算法,能够同时实现人脸检测、关键点定位和人脸对齐等功能。其对于大尺寸人脸的检测效果较好,并且模型规模相对于 RetinaFace 的较小。
  • "retinaface":一种基于卷积神经网络的人脸检测算法,具有高精度的特点,被公认为是最先进的人脸检测算法,但需要很高的计算能力。相比 MTCNN,检测小尺寸人脸的效果更好。

因此如果你希望结果更加精确,那么使用 RetinaFace 或 MTCNN;如果希望检测速度更快,比如清洗一部分没有人脸的照片,那么可以使用 OpenCV 或 SSD。

  • "opencv":最轻量级的人脸检测器,使用不基于深度学习技术的 haar-cascade 算法,因此速度很快,但准确率较低。而为了使 OpenCV 正常工作,需要正面图像,如果脸侧了一下或者局部发生遮挡,准确率就会受到影响。此外也不擅长对眼睛的检测,容易导致对齐问题。目前 DeepFace 使用的默认检测器就是 OpenCV。
  • "dlib":该检测器在后台使用 hog 算法,与 OpenCV 类似,它也不是基于深度学习的,但它的检测和对齐分数相对较高。
  • "ssd":单次检测器,它是一种流行的基于深度学习的检测器,但性能可与 OpenCV 相媲美。只是 SSD 不支持面部特征点,并且依赖于 OpenCV 的眼睛检测模块来对齐,因此尽管其检测性能很高,但对准分数仅为平均水平。
  • "mtcnn":基于深度学习的人脸检测器,并带有面部特征点,所以它的检测和对齐得分都很高但是,但速度比 OpenCV,SSD 和 Dlib 慢。另外 MTCNN 是一种多任务级联卷积神经网络的人脸检测算法,能够同时实现人脸检测、关键点定位和人脸对齐等功能。其对于大尺寸人脸的检测效果较好,并且模型规模相对于 RetinaFace 的较小。
  • "retinaface":一种基于卷积神经网络的人脸检测算法,具有高精度的特点,被公认为是最先进的人脸检测算法,但需要很高的计算能力。相比 MTCNN,检测小尺寸人脸的效果更好。

因此如果你希望结果更加精确,那么使用 RetinaFace 或 MTCNN;如果希望检测速度更快,比如清洗一部分没有人脸的照片,那么可以使用 OpenCV 或 SSD。

distance_metric:距离(面部嵌入)度量方法,可以是 cosine、euclidean 或 euclidean_l2。

enforce_detection:如果没有检测到人脸时,是否引发异常,可以将其设置为 False。

align:是否执行面部对齐。(使用面部对齐,消除姿态、光照和表情等因素对识别结果的影响。)

normalization:用于预处理图像的归一化技术。

代码实例:
 

results = DeepFace.verify(src_file_path_name,make_file_path_name,model_name="retinaface", detector_backend="retinaface",enforce_detection=False,align=True)
  • results["verified"] 是一个布尔值,如果相似度超过某个阈值则返回True,表示系统认为这两张图片是同一个人。
  • results["distance"] 是一个数值,通常来说,这个值越小,表明两张图片的相似度越高。

采用不同模型和不同的后端算法阈值的大小均有所不同,

  • 对于 FaceNet 模型,阈值可能设置在 0.40 左右。
  • 对于 VGG-Face 模型,阈值可能在 0.60 或更高。

 results["distance"]的值越小,代表两个人脸是同一个值

2.人脸识别:识别图片中存在多少个人脸

  results = DeepFace.extract_faces(
        pic,
        detector_backend="retinaface",
        enforce_detection=False)
    #print("result:", results)
    for result in results:
        face_area = result["facial_area"]
        cv2.rectangle(pic, (face_area['x'], face_area['y']),
                      (face_area['x'] + face_area['w'], face_area['y'] + face_area['h']), (255, 0, 0), 3)
    #判断双头结果
    if len(results)>1:
        cv2.imwrite(output_path_name, pic)
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as excutor:
    futures = []
    for imgname in tqdm(imgs_list):
        #遍历图片排除头的图像
        if "_head_" in imgname:
            continue
        #将图片全部加入任务
        path_filename = os.path.join(origin_path,imgname)
        task = excutor.submit(find_face,path_filename)
        futures.append(task)
    count = len(futures)
    print("共记录{}个任务".format(count))
    prad = tqdm(total=count,position=0)
    for future in concurrent.futures.as_completed(futures):
        prad.update(1)
        future.result()

 应用:此种情况一般应用于检测图片中是否出现了多头的情况,这种情况deepface的准确率达到了99%

3.人脸分析:使用deepface分析人的人种,人的性别,人的心情

# 使用deepface对人脸进行分析,作为评判生图合理性的标准之一
import time
from openpyxl.drawing.image import Image
from deepface import DeepFace
import cv2
import openpyxl
import os
from tqdm import tqdm
py_path = os.path.dirname(__file__)
imgs_path = "./inputDIc"
img_dirs = os.listdir(imgs_path)
OUTPUT_FILE =os.path.join(py_path,"analyze_{}.xlsx".format(time.strftime("%Y-%m-%d %H: %M: %S"),time.localtime()))
path_filename = "./Newoutputimages_2/0_head_pic_Anime_0_balanced.png"
wb = openpyxl.Workbook()
ws = wb.active
ws.append(["img","angry","disguest","fear","happy","sad","surprise","neutral","dominant_emotion","age","gender-women","gender-man","dominant_race"])
# 进行遍历
print(img_dirs)
print("共计{}张图片".format(len(img_dirs)))
for img_name in tqdm(img_dirs):
    path_filename = os.path.join(imgs_path,img_name)
    try:
        results = DeepFace.analyze(path_filename, detector_backend="retinaface", enforce_detection=False, align=True)
    except Exception as e:
        print("error:",e)
        ws.append([path_filename])
        continue
    result = results[0]
    ws.append([path_filename, result["emotion"]["angry"], result["emotion"]["disgust"], result["emotion"]["fear"],
               result["emotion"]["happy"], result["emotion"]["sad"], result["emotion"]["surprise"],
               result["emotion"]["neutral"], result["dominant_emotion"], result["age"], result["gender"]["Man"],
               result["gender"]["Woman"], result["dominant_gender"], result["dominant_race"]])

# print(results)
# print(len(results))
# result = results[0]
#加载图片
img = Image(path_filename)
#将分析结果写入excel表格中
wb.save(OUTPUT_FILE)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/239315.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python 进阶(十六):二进制和ASCII码的转换(binascii 模块)

大家好,我是水滴~~ 本文详细介绍了Python中的binascii模块及其使用方法。通过binascii模块,我们可以方便地进行二进制和ASCII字符串之间的转换操作。文章中包含大量的示例代码,希望能够帮助新手同学快速入门。 《Python入门核心技术》专栏总…

【unity】【WebRTC】从0开始创建一个Unity远程媒体流app-设置输入设备

【项目源码】 包括本篇需要的脚本都打包在项目源码中,可以通过下面链接下载: 【背景】 目前我们能投射到远端浏览器(或者任何其它Peer)的媒体流只有默认的MainCamera画面,其实我们还可以通过配置输入来传输操作输入信息,比如键鼠等。 【追加input processing组件】 …

在AWS Lambda中使用FFmpeg处理m3u8视频流

大纲 1 部署有FFmpeg功能的Lambda环境1.1 部署层1.2 部署代码1.2.1 FFmpeg指令1.2.2 代码 2 配置Lambda角色权限2.1 选择角色类型2.2 设置权限2.3 保存角色2.4 绑定角色 参考文献 在直播里领域,我们经常需要对视频流进行处理。FFmpeg则是该领域中处理的利器。这篇文…

Spring 面向切面编程(AOP)

一、aop介绍 (一)前言 一般的后端开发流程是纵向开发,就是controller(控制层)->service(业务层)->mapper(数据持久层),Spring采用动态代理技术可以在…

关于mars3d通过zIndex参数实现控制图层层级叠加效果说明

问题: 1.项目中使用了GraphicLayer、GeoJSONLayer、ArcGISLayer,期望mars3d能够提供方法进行设置每个图层的zindex顺序 解决方案: 1.首先在mars3d的开发教程中查询三个Layer属于的图层类型,GraphicLayer、GeoJSONLayer均属于矢…

鸿蒙系统最近删除文件夹的路径

鸿蒙手机上删除文件,会将文件移动到类似回收站的路径下,如何找到这个路径? 先找用文件管理器找到一个文件 比如aaa.jpg ,这时在调试的shell下面运行 find . -name aaaa.jpg 得到如下 这时再删除该文件 再次运行 find . -name a…

单片机——通信协议(FPGA+c语言应用之iic篇)

一.I2C的功能特点 (1)功能包括: 1.只需要两条总线; 2.没有严格的波特率要求,例如使用RS232,主设备生成总线时钟; 3.所有组件之间都存在简单的主/从关系,连接到总线的每个设备均可通…

【PTA刷题】 求子串(代码+详解)

【PTA刷题】 求子串(代码详解) 题目 请编写函数,求子串。 函数原型 char* StrMid(char *dst, const char *src, int idx, int len);说明:函数取源串 src 下标 idx 处开始的 len 个字符,保存到目的串 dst 中,函数值为 dst。若 len…

BERT大模型:英语NLP的里程碑

BERT的诞生与重要性 BERT(Bidirectional Encoder Representations from Transformers)大模型标志着自然语言处理(NLP)领域的一个重要转折点。作为首个利用掩蔽语言模型(MLM)在英语语言上进行预训练的模型&…

sylar高性能服务器-配置(P10-p11)代码解析+调试分析

文章目录 p9:配置模块搭建一、ConfigvarBase二、ConfigVar三、Config四、小结 p10:YAML的使用一、安装yaml-cpp二、使用yaml-cpp三、代码解析 P11:YAML与日志的整合一、方法函数二、代码调试三、test_config结果四、小结 p9:配置模…

josef 静态电压继电器 RWY-D1/3 额定电压:AC380V电压范围180~440V

系列型号 RWY-D1型电压继电器; RWY-D2型电压继电器; 一、 概述 RYW-D系列电压继电器(以下简称本继电器)用于发电机、变压器和输电线的电器保护装置中,作为过电压保护或低电压闭锁的启动原件。本继电器为集成电路静…

如何解决MAC卸载软件后图标还在的问题

今天卸载photoshop突然遇到一个问题,程序卸载完成后居然还有一大堆的图标删不掉,果断找法子,下面就是我应用到的方法,希望对你有所帮助,只能是photoshop太流氓啊。。。 方法一: 使用命令(Command) 空格键…

成绩统计(oj题)

一道考验细节的题 最后是&#xff1f;&#xff1a;运算符用错了 代码如下&#xff1a; #include<stdio.h> #include<string.h> typedef struct Grade{int num;int inv; }Grade; Grade tmp[10]; int n, m, g, interval[10] {0};int main(void) {scanf("%d%d…

【Spring进阶系列丨第五篇】详解Spring中的依赖注入

文章目录 一、说明二、构造函数注入2.1、方式一【index索引方式】2.1.1、定义Bean2.1.2、主配置文件中配置Bean2.1.3、测试 2.2、方式二【indextype组合方式】2.2.1、定义Bean2.2.2、主配置文件配置Bean2.2.3、测试2.2.4、解决方案 2.3、方式三【name方式】2.3.1、定义Bean2.3.…

微信一天能加多少好友?可以自动加好友吗?

微信一天能加多少好友&#xff1f; 01 微信加人规则 你的微信去添加好友时&#xff0c;会出现频繁提示吗&#xff1f;明明手上有一堆数据&#xff0c;但是总是被频繁这个问题所困恼。首先你要先知道微信加入的规则是怎么样的&#xff0c;你才能避免添加频繁&#xff0c;加到更…

【docker 】 安装docker(centOS7)

官网 docker官网 github源码 官网 在CentOS上安装Docker引擎 官网 在Debian上安装Docker引擎 官网 在 Fedora上安装Docker引擎 官网 在ubuntu上安装Docker引擎 官网 在RHEL (s390x)上安装Docker引擎 官网 在SLES上安装Docker引擎 最完善的资料都在官网。 卸载旧版本 …

环境变量提权

环境变量提权 借鉴文章LINUX提权之环境变量提权篇 - 知乎 (zhihu.com) 利用条件 存在一个文件&#xff0c;利用su权限执行&#xff0c;普通用户可以执行此文件&#xff0c;但只限制在一个目录下可以执行 利用方式 将此文件的目录添加到环境变量中 export PATH/tmp:$PATHe…

ROS2 LifecycleNode讲解及实例

LifecycleNode讲解及实例 文章目录 前言LifecycleNode是什么背景生命周期状态定义UnconfiguredInactiveActiveFinalized 转换逻辑图示标准接口 代码实现&测试代码测试 总结 前言 本文用来记录什么是LifecycleNode&#xff0c;做背景介绍及基本原理的介绍及分析如何使用。1…

ARM:作业3

按键中断代码编写 代码: key_it.h #ifndef __KEY_IT_H__ #define __KEY_IT_H__#include "stm32mp1xx_gpio.h" #include "stm32mp1xx_exti.h" #include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gic.h"void key1_it_config(); voi…

2023年度盘点:AIGC、AGI、GhatGPT、人工智能大模型必读书单

2023年是人工智能大语言模型大爆发的一年&#xff0c;一些概念和英文缩写也在这一年里集中出现&#xff0c;很容易混淆&#xff0c;甚至把人搞懵。 LLM&#xff1a;Large Language Model&#xff0c;即大语言模型&#xff0c;旨在理解和生成人类语言。LLM的特点是规模庞大&…