做数据分析为何要学统计学(6)——什么问题适合使用t检验?

t检验(Student's t test),主要依靠总体正态分布的小样本(例如n < 30)对总体均值水平进行差异性判断。

t检验要求样本不能超过两组,且每组样本总体服从正态分布(对于三组以上样本的,要用方差分析,其他文章详述)。因此使用t检验前需要对所有样本分别进行正态分布检验。如果有不服从正态分布的情况,可以考虑使用MannWhitney检验和Wilcoxon检验,后面单独文章介绍。

需要说明的是t检验还分为单样本t检验、独立双样本t检验配对双样本t检验,适用条件也各有不同,以下分别举例介绍。

1.单样本t检验

用于判断总体是否与既定均值无差异,可以通俗理解为总体均值是否与该既定均值相等。如下例

某产品合格率经10轮检测,保持在如下水平,试问可否认为其合格率为96.5%?

合格率(%):97.6 93.5 98.7 95.4 95.2 97.7 96.1 94.6 96.8 95.7

首先,使用scipy.stats.normaltest对样本进行正态分布检验.

from scipy import stats
import numpy as np
X=np.array([97.6,93.5, 98.7 ,95.4 ,95.2 ,97.7, 96.1 ,94.6 ,96.8 ,95.7])
stats.normaltest(X)
结果:NormaltestResult(statistic=0.07878377023988445, pvalue=0.9613738871946388)。p>0.05,样本通过正态分布检验。

然后,使用sstats.ttest_1samp进行单样本t检验。

stats.ttest_1samp(X,96.5)

结果:Ttest_1sampResult(statistic=-0.7396549082121191, pvalue=0.47835758603283807)。p>0.05,接受总体均值为96.5%的假设。

2.独立双样本t检验

用于判断两组独立样本在总体上是否均值无差异,可以通俗理解为两组独立采样的样本所代表的总体均值是否相等。所谓独立采样指的是:对不同个体或单位的受试对象进行采样,如对男性和女性的身高进行采样。采样方法可以相同,也可以不同。

独立双样本t检验还要求两组样本的总体方差齐性(也就是无差异),如果方差不齐,则可以使用Welch t检验(Welch's t-test)。

首先我们先来看满足独立双样本t检验的例子。

某产品两条生产线的合格率经10轮检测,保持在如下水平,试问可否认为其合格率是相同的?

生产线1合格率(%):97.6 93.5 98.7 95.4 95.2 97.7 96.1 94.6 96.8 95.7

生产线2合格率(%):97.2 94.2 97.8 94.9 96.3 98.7 96.5 95.6 97.1 96.2

以下为示例代码

X1=np.array([97.6,93.5, 98.7 ,95.4 ,95.2 ,97.7, 96.1 ,94.6 ,96.8 ,95.7])
X2=np.array([97.2,94.2,97.8,94.9,96.3,98.7,96.5,95.6,97.1,96.2])
#正态分布检验
stats.normaltest(X1),stats.normaltest(X2)
#方差齐性检验
stats.levene(X1,X2)
#独立双样本t检验
stats.ttest_ind(X1,X2)

上述各项检验p值均大于0.05,因此可以接受两条生产线产品质量无差异的假设。

如果X2=[87.2,92.2,97.8,97.9,96.3,98.7,86.5,95.6,97.1,86.2],则两组样本无法通过方差齐性检验(p=0.03878,小于显著性水平a=0.05)。于是,我们采用Welch t检验。

#独立双样本Welch t检验,equal_var参数值为False时,ttest_ind执行Welch t检验检验
stats.ttest_ind(X1,X2,equal_var=False)

检验结果为:Ttest_indResult(statistic=1.5289576830456144, pvalue=0.15523450660981364)。可以接受两个生产线产品质量相同的假设。

3.配对双样本t检验

用于判断两组配对样本在总体上是否均值无差异。所谓配对采样指的是:对同一个体或单位的受试对象进行采样,如一个人在两个不同时间点的血压值。

配对双样本t检验也要求两组样本的总体方差齐性,同时要求样本容量相同且两个样本各数值的顺序与采样顺序一致。

配对双样本t检验的函数是stats.ttest_rel(X1,X2),使用方法与独立双样本t检验相同,不再赘述。


以上介绍的是均值无差异推断。这种推断是双侧的(two-sided),在实际应用中,我们还会遇到单侧检验(one-sided)的情况,即判断不同总体的均值大小。例如判断第一条生产线的产品质量是否优于第二条生产线。

无论是独立双样本t检验还是配对双样本t检验均支持单侧检验,只需要在检验函数中加入alternative参数即可。该参数的取值为“less”或"greater"。如下例

#X1与X2服从正态分布但方差不齐,使用Welch t检验(单侧)
X1=np.array([97.6,93.5, 98.7 ,95.4 ,95.2 ,97.7, 96.1 ,94.6 ,96.8 ,95.7])
X2=np.array([87.2,92.2,97.8,97.9,96.3,98.7,86.5,95.6,93.1,86.2])
stats.ttest_ind(X1,X2,alternative="less",equal_var=False)
结果:Ttest_indResult(statistic=1.81631548017011, pvalue=0.9514575126271494)。

该结果如何解读呢?是\bar{X_1}>\bar{X_2},还是\bar{X_1}<\bar{X_2}?这是很多初学者比较困惑的地方。这里作出重要解释:

假设检验的基本思想是“小概率事件”原理,其统计推断方法是带有某种概率性质的反证法。换句话说,我想得到A这个结果,我需要做得事是证明\bar{A}不成立。也就是说

零假设(null hypothesis,无效假设)H_0: \bar{A}

备择假设(alternative hypothesis,想要的结果)H_1: A

 上述检验的备择检验H1是"less",所以零假设H0就是"greater"。由于p>0.05,所以接受零假设,即\bar{X_1}>\bar{X_2}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/238171.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2023/12/10总结

学习 WebSocket 一共四种方法&#xff0c;传递数据是要通过JSON格式传递 前端 onopen 在连接时 onmessage 收到消息时 通常携带参数 event &#xff0c;event.data 是消息 onerror 发生错误时 onclose 关闭连接时 发送消息 需要安装 vue-native-websocket 包 pnpm i vue-n…

数学建模算法

算法部分 1. 评价类模型2. TOPSIS3. 线性规划4. 聚类分析5. 预测模型6. 拉伊达准则(对异常值进行剔除)7. 数据拟合8. 图论代码练习1. 模拟圆周率2. 斐波那契数列3. 四只鸭子落在一个圆中概率4. 方程2: y" uy y,初值y(0) 1,y(0) 0 算法讲解 matlab代码大全 1. 评价类模型…

IP与以太网的转发操作

TCP模块在执行连接、收发、断开等各阶段操作时&#xff0c;都需要委托IP模块将数据封装成包发送给通信对象。 网络中有路由器和集线器两种不同的转发设备&#xff0c;它们在传输网络包时有着各自的分工。 (1)路由器根据目标地址判断下一个路由器的位置 (2)集线器在子网中将网…

权威认证!景联文科技入选杭州市2023年第二批省级“专精特新”中小企业认定名单

为深入贯彻党中央国务院和省委省政府培育专精特新的决策部署&#xff0c;10月7日&#xff0c;杭州市经济和信息化委员会公示了2023年杭州“专精特新”企业名单&#xff08;第二批&#xff09;。 根据工业和信息化部《优质中小企业梯度培育管理暂行办法》&#xff08;工信部企业…

FFmpeg的AVFilter框架总成AVFilter-AVFilterContext

毫无疑问,还是和前面的一样一个context和一个包含有回调函数指针的插件结构体,想要实现自己的插件,主要实现里面的回调函数就可以了,当然,AVFilter比其它模块稍微复杂一点还要牵扯到其它一些辅助模块,在其它章节介绍 下面是关键函数调用图: /*** Add a frame to the bu…

用 CSS 写一个渐变色边框的输入框

Using_CSS_gradients MDN 多渐变色输入框&#xff0c;群友问了下&#xff0c;就试着写了下&#xff0c;看了看 css 渐变色 MDN 文档&#xff0c;其实很简单&#xff0c;代码记录下&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta ch…

实验制备高纯酸PFA酸纯化器材质分析,SCH亚沸蒸馏器特点是什么

.酸纯化器&#xff1a;也称酸蒸馏器、高纯酸提取系统、酸纯化系统、亚沸腾蒸馏器、高纯酸蒸馏纯化器。常规实验室分析中&#xff0c;各种酸及试剂被广泛应用于日常的样品处理及分析中。那么应该选用什么材质的酸纯化器呢 氟塑料酸纯化器&#xff0c;提纯酸效果好&#xff0c;避…

12.11 C++ 作业

完善对话框&#xff0c;点击登录对话框&#xff0c;如果账号和密码匹配&#xff0c;则弹出信息对话框&#xff0c;给出提示”登录成功“&#xff0c;提供一个Ok按钮&#xff0c;用户点击Ok后&#xff0c;关闭登录界面&#xff0c;跳转到其他界面 如果账号和密码不匹配&#xf…

数据库 02-03补充 聚合函数--一般聚合分组和having

聚合函数&#xff1a; 01.一般的聚合函数&#xff1a; 举个例子&#xff1a; 一般聚合函数是用于单个元祖&#xff0c;就是返回一个数值。 02.分组聚合&#xff1a; 举个例子&#xff1a;

scikit-learn-feature_selection

参考&#xff1a; Feature selection 1. 移除低方差的特征 方差低&#xff0c;说明变化不大。 将特征方差值小于一定值的特征移除 单变量特征分析 通过单特征分析&#xff0c;选择最好的&#xff08;前k个&#xff09;的特征&#xff0c;scikit-learn 提供的方法有&#x…

移液器吸头材质选择——PFA吸头在半导体化工行业的应用

PFA吸头是一种高性能移液器配件&#xff0c;这种材料具有优异的耐化学品、耐热和电绝缘性能&#xff0c;使得PFA吸头在应用中表现出色。那么它有哪些特点呢&#xff1f; 首先&#xff0c;PFA吸头具有卓越的耐化学腐蚀性能。无论是酸性溶液、碱性溶液还是有机溶剂&#xff0c;P…

springboot打成war包及VUE打成war包放入tomcat启动

1.springboot打成war包步骤 首先在springboot启动类中继承SpringBootServletInitializer&#xff0c;重写configure方法&#xff0c;如下: SpringBootApplication() public class StartApplication extends SpringBootServletInitializer {public static void main(String[] …

[足式机器人]Part2 Dr. CAN学习笔记-数学基础Ch0-8Matlab/Simulink传递函数Transfer Function

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记-数学基础Ch0-8Matlab/Simulink传递函数Transfer Function L − 1 [ a 0 Y ( s ) s Y ( s ) ] L − 1 [ b 0 U ( s ) b 1 s U ( s ) ] ⇒ a 0 y ( t ) y ˙ ( t ) b 0 u ( t ) b 1 u ˙ ( t…

【操作系统和计网从入门到深入】(二)进程

前言 这个专栏其实是博主在复习操作系统和计算机网络时候的笔记&#xff0c;所以如果是博主比较熟悉的知识点&#xff0c;博主可能就直接跳过了&#xff0c;但是所有重要的知识点&#xff0c;在这个专栏里面都会提到&#xff01;而且我也一定会保证这个专栏知识点的完整性&…

如何使用GaussDB创建外表(FOREIGN TABLE)

目录 一、前言 二、创建外表的特点 二、GaussDB创建外表访问外部数据库表&#xff08;示例&#xff09; 1、创建外表 2、FAQ&#xff1a;CREATE USER MAPPING错误 三、GaussDB创建外表映射数据文件&#xff08;示例&#xff09; 1、创建数据文件 2、创建外表 3、FAQ&a…

AI 种菜革命:农业科学家们的探索/《流浪地球》导演感受到AI的威胁,《浪球3》也遇灵感洗礼 | 魔法半周报

我有魔法✨为你劈开信息大海❗ 高效获取AIGC的热门事件&#x1f525;&#xff0c;更新AIGC的最新动态&#xff0c;生成相应的魔法简报&#xff0c;节省阅读时间&#x1f47b; &#x1f525; 资讯预览 AI 种菜革命&#xff1a;农业科学家们的探索 《流浪地球》导演感受到AI的威…

打包CSS

接上一个打包HTML继续进行CSS的打包 1.在之前的文件夹里的src文件夹创建一个css文件 2.在浏览器打开webpack——>中文文档——>指南——>管理资源——>加载CSS 3.复制第一句代码到终端 4.复制下图代码到webpack.config.js脚本的plugins&#xff1a;[.....]内容下…

vue3使用mars3d实现地图轮播高亮,且每个区域颜色不一样

效果图(珙县就是轮播高亮的效果) 思路:初始化一张完整的地图&#xff0c;然后定时器去挨个生成每个县上的地图&#xff0c;并且覆盖在原来的位置&#xff0c;每到一定的时间&#xff0c;就清除之前生成高亮图并且生成下一张高亮图 如何引入地图 上篇文章已详细发过 略 父组…

做数据分析为何要学统计学(5)——什么问题适合使用卡方检验?

卡方检验作为一种非常著名的非参数检验方法&#xff08;不受总体分布因素的限制&#xff09;&#xff0c;在工程试验、临床试验、社会调查等领域被广泛应用。但是也正是因为使用的便捷性&#xff0c;造成时常被误用。本文参阅相关的文献&#xff0c;对卡方检验的适用性进行粗浅…

瑞萨RZ/G2L核心板Linux Log目录文件详解

为了排除系统问题&#xff0c;监控系统健康状况以及了解系统与应用程序的交互方式&#xff0c;我们需要了解各log文件的作用&#xff0c;以G2L中yocto文件系统为例&#xff0c;在系统/var/log/目录下会存放记录系统中各个部分的log文件作用如下&#xff1a; 1. 文件详情 下图…