自定义类型详解(1)

文章目录

  • 目录
    • 1. 结构体
      • 1.1 结构的基础知识
      • 1.2 结构的声明
      • 1.3 特殊的声明
      • 1.4 结构的自引用
      • 1.5 结构体变量的定义和初始化
      • 1.6 结构体内存对齐
      • 1.7 修改默认对齐数
      • 1.8 结构体传参
    • 2. 位段
      • 2.1 什么是位段
      • 2.2 位段的内存分配
      • 2.3 位段的跨平台问题
      • 2.4 位段的应用
    • 3. 枚举
      • 3.1 枚举类型的定义
      • 3.2 枚举的优点
      • 3.3 枚举的使用
    • 4. 联合(共用体)
      • 4.1 联合类型的定义
      • 4.2 联合的特点
      • 4.3 联合大小的计算

目录

  • 结构体
  • 位段
  • 枚举
  • 联合体
  • 通讯录的实现

1. 结构体

1.1 结构的基础知识

结构是一些值的集合,这些值称为成员变量,结构的每个成员可以是不同类型的变量。

区分:

数组:一组相同类型元素的集合

1.2 结构的声明

结构的声明
举个例子:
结构的声明举例

1.3 特殊的声明

在声明结构的时候,可以不完全的声明。

struct
{
	int a;
	char c;
	float f;
}x;

struct
{
	int a;
	char c;
	float f;
}* p;

//上面的两个结构在声明的时候省略掉了结构体标签(tag)。

int main()
{
	//p = &x;//err

	return 0;
}

注:
编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。

1.4 结构的自引用

结构的自引用
以下写法是错误的:

typedef struct
{
	int data;
	Node* next;
}Node;

应该这样写:

typedef struct Node
{
	int data;
	struct Node* next;
}Node;

int main()
{
	Node n = { 0 };

	return 0;
}

1.5 结构体变量的定义和初始化

#include <stdio.h>

struct SN
{
	char c;
	int i;
}sn1 = { 'q', 100 }, sn2 = { .i = 200, .c = 'w'};//全局变量

struct S
{
	double d;
	struct SN sn;
	int arr[10];
};

int main()
{
	struct SN sn3, sn4;//局部变量
	printf("%c %d\n", sn2.c, sn2.i);

	struct S s = { 3.14, { 'a', 99 }, { 1, 2, 3 } };
	printf("%lf %c %d\n", s.d, s.sn.c, s.sn.i);
	int i = 0;

	for (i = 0; i < 10; i++)
	{
		printf("%d ", s.arr[i]);
	}

	return 0;
}

1.6 结构体内存对齐

结构体的对齐规则:

  1. 第一个成员在与结构体变量偏移量为0的地址处。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的一个对齐数该成员大小较小值
  • VS中默认的值为8
  • Linux中没有默认对齐数,对齐数就是成员自身的大小
  1. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
  2. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

我们可以通过代码来观察:

#include <stdio.h>
#include <stddef.h>

struct S1
{
	char c1;
	int i;
	char c2;
};

struct S2
{
	int i;
	char c1;
	char c2;
};

int main()
{
	printf("%d\n", sizeof(struct S1));//12
	printf("%d\n", sizeof(struct S2));//8

	//可以计算结构体成员相较于结构体起始位置的偏移量
	printf("%d\n", offsetof(struct S1, c1));//0
	printf("%d\n", offsetof(struct S1, i));//4
	printf("%d\n", offsetof(struct S1, c2));//8

	return 0;
}

再举个例子:

#include <stdio.h>

struct S3
{
	double d;
	char c;
	int i;
};

struct S4
{
	char c1;
	struct S3 s3;
	double d;
};

int main()
{
	printf("%d\n", sizeof(struct S3));//16
	printf("%d\n", sizeof(struct S4));//32

	return 0;
}

如果结构体中有数组,我们将它看作一个一个的元素即可:

#include <stdio.h>
#include <stddef.h>

struct S
{
	char c;
	int arr[4];
};

int main()
{	
	printf("%d\n", offsetof(struct S, arr[0]));//4
	printf("%d\n", offsetof(struct S, arr[1]));//8
	printf("%d\n", offsetof(struct S, arr[2]));//12
	printf("%d\n", offsetof(struct S, arr[3]));//16
	printf("%d\n", sizeof(struct S));//20

	return 0;
}

为什么存在内存对齐?

  1. 平台原因(移植原因):
    不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
  2. 性能原因:
    数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。

内存对齐的原因
总体来说:

结构体的内存对齐是拿空间来换取时间的做法。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:

让占用空间小的成员尽量集中在一起。

#include <stdio.h>

struct S1
{
	char c1;
	int i;
	char c2;
};

struct S2
{
	int i;
	char c1;
	char c2;
};

int main()
{
	printf("%d\n", sizeof(struct S1));//12
	printf("%d\n", sizeof(struct S2));//8

	return 0;
}

S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别。

1.7 修改默认对齐数

之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。

#include <stdio.h>

#pragma pack(8)//设置默认对齐数为8

struct S1
{
	char c1;
	int i;
	char c2;
};

#pragma pack()//取消设置的默认对齐数,还原为默认

#pragma pack(1)//设置默认对齐数为1

struct S2
{
	char c1;
	int i;
	char c2;
};

#pragma pack()//取消设置的默认对齐数,还原为默认

int main()
{
	printf("%d\n", sizeof(struct S1));//12
	printf("%d\n", sizeof(struct S2));//6

	return 0;
}

结论:

结构在对齐方式不合适的时候,我们可以自己更改默认对齐数。

一道笔试题:

写一个宏,计算结构体中某变量相对于首地址的偏移,并给出说明

考察: offsetof 宏的实现
注:这里还没学习宏,可以放在宏讲解完后再实现。

1.8 结构体传参

#include <stdio.h>

struct S
{
	int data[100];
	int num;
};

void print1(struct S tmp)
{
	printf("%d\n", tmp.num);
}

void print2(const struct S* ps)
{
	printf("%d\n", ps->num);
}

int main()
{
	struct S s = { { 1, 2, 3 }, 100 };
	print1(s);
	print2(&s);

	return 0;
}

上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数。
原因:

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。

结论:
结构体传参的时候,要传结构体的地址

2. 位段

结构体讲完就得讲讲结构体实现位段的能力。

2.1 什么是位段

位段的声明和结构是类似的,有两个不同:

  1. 位段的成员必须是 charintunsigned intsigned int
  2. 位段的成员名后边有一个冒号一个数字
#include <stdio.h>

//00
//01
//10
//11
//比如_a只有这四种取值,那么只需要两个比特位就可以解决,就不需要一个整型那么大的空间了

struct A
{
	int _a : 2;//二进制位
	int _b : 5;
	int _c : 10;
	int _d : 30;
};

int main()
{
	printf("%d\n", sizeof(struct A));//8

	return 0;
}

2.2 位段的内存分配

  1. 位段的成员可以是 intunsigned intsigned int 或者是 char (属于整形家族)类型
  2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
  3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

我们来看一下在VS上位段的内存分配:

#include <stdio.h>

struct S
{
	char a : 3;
	char b : 4;
	char c : 5;
	char d : 4;
};

int main()
{
	struct S s = { 0 };
	s.a = 10;
	s.b = 12;
	s.c = 3;
	s.d = 4;
	printf("%d\n", sizeof(s));//3

	return 0;
}

VS上位段的内存分配
VS上位段的内存分配(1)

2.3 位段的跨平台问题

  1. int 位段被当成有符号数还是无符号数是不确定的。
  2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。)
  3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
  4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结: 跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

2.4 位段的应用

IP数据包的格式:
IP数据包的格式

3. 枚举

枚举顾名思义就是一一列举,把可能的取值一一列举。
比如我们现实生活中:

一周的星期一到星期日是有限的7天,可以一一列举。
性别有:男、女、保密,也可以一一列举。
月份有12个月,也可以一一列举

这里就可以使用枚举了。

3.1 枚举类型的定义

#include <stdio.h>

enum Color
{
	RED,
	GREEN,
	BLUE
};

int main()
{
	printf("%d\n", RED);//0
	printf("%d\n", GREEN);//1
	printf("%d\n", BLUE);//2

	return 0;
}

{}中的内容是枚举类型的可能取值,也叫枚举常量
这些可能取值都是有值的,默认从0开始,依次递增1,当然在声明枚举类型的时候也可以赋初值。
例如:

#include <stdio.h>

enum Color
{
	RED = 4,
	GREEN,
	BLUE
};

int main()
{
	printf("%d\n", RED);//4
	printf("%d\n", GREEN);//5
	printf("%d\n", BLUE);//6

	return 0;
}
#include <stdio.h>

enum Color
{
	RED,
	GREEN = 8,
	BLUE
};

int main()
{
	printf("%d\n", RED);//0
	printf("%d\n", GREEN);//8
	printf("%d\n", BLUE);//9

	return 0;
}
#include <stdio.h>

enum Color
{
	RED = 4,
	GREEN = 8,
	BLUE = 1
};

int main()
{
	printf("%d\n", RED);//4
	printf("%d\n", GREEN);//8
	printf("%d\n", BLUE);//1

	return 0;
}

3.2 枚举的优点

我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点:

  1. 增加代码的可读性和可维护性
  2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
  3. 便于调试
  4. 使用方便,一次可以定义多个常量

3.3 枚举的使用

enum Color
{
	RED,
	GREEN,
	BLUE
};

int main()
{
	enum Color c = GREEN;

	return 0;
}

4. 联合(共用体)

4.1 联合类型的定义

联合也是一种特殊的自定义类型,这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
比如:

#include <stdio.h>

union Un
{
	char c;
	int i;
};

int main()
{
	printf("%d\n", sizeof(union Un));//4

	union Un un = { 0 };

	return 0;
}

4.2 联合的特点

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员)。

#include <stdio.h>

union Un
{
	char c;
	int i;
};

int main()
{
	union Un un = { 0 };

	printf("%p\n", &un);
	printf("%p\n", &un.i);
	printf("%p\n", &un.c);
	//以上三个地址是一样的

	un.i = 0x11223344;
	un.c = 0x55;

	return 0;
}

联合的特点
有这样一道题目:

判断当前计算机的大小端存储

#include <stdio.h>

union Un
{
	int i;
	char c;
};

int main()
{
	union Un u = { 0 };
	u.i = 1;

	if (1 == u.c)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}

	return 0;
}
#include <stdio.h>

int check_sys()
{
	union
	{
		int i;
		char c;
	}un = { .i = 1 };

	return un.c;
}

int main()
{
	int ret = check_sys();

	if (1 == ret)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}

	return 0;
}

4.3 联合大小的计算

  • 联合的大小至少是最大成员的大小。
  • 当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。

比如:

#include <stdio.h>

union Un1
{
	char c[5];//1 8 1         5
	int i;//4 8 4
};

union Un2
{
	short c[7];//2 8 2         14
	int i;//4 8 4
};

int main()
{
	printf("%d\n", sizeof(union Un1));//8
	printf("%d\n", sizeof(union Un2));//16

	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/236219.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Appium python自动化测试系列之移动自动化测试!

1.1 移动自动化测试现状 因为软件行业越来越发达&#xff0c;用户的接受度也在不断提高&#xff0c;所以对软件质量的要求也随之提高&#xff0c;当然这个也要分行业&#xff0c;但这个还是包含了大部分。因为成本、质量的变化现在对自动化测试的重视度越来越高&#xff0c;在…

mmseg上手自己的数据集

制作自己的数据集&#xff0c;VOC格式为例。 这三个文件包括数据集的名称。可以使用labelme脚本自动生成。 跟据预测类别修改配置文件 D:\projects\mmsegmentation-main\mmseg\datasets\voc.py 因为是voc格式的数据集&#xff0c;在这个文件里进行配置&#xff0c;修改成自己数…

保研毕业论文查重率多少通过【保姆教程】

大家好&#xff0c;今天来聊聊保研毕业论文查重率多少通过&#xff0c;希望能给大家提供一点参考。 以下是针对论文重复率高的情况&#xff0c;提供一些修改建议和技巧&#xff1a; 保研毕业论文查重率多少通过 在保研过程中&#xff0c;毕业论文的查重率是衡量学术诚信和论文…

微信社群机器人开发

简要描述&#xff1a; 删除朋友圈 请求URL&#xff1a; http://域名地址/deleteSns 请求方式&#xff1a; POST 请求头Headers&#xff1a; Content-Type&#xff1a;application/jsonAuthorization&#xff1a;login接口返回 参数&#xff1a; 参数名必选类型说明wId…

AMEYA360--罗姆与Quanmatic公司利用量子技术优化制造工序并完成验证

全球知名半导体制造商罗姆(总部位于日本京都市)于2023年1月起与 Quanmatic Inc.(总部位于日本东京都新宿区&#xff0c;以下简称“Quanmatic”)展开合作&#xff0c;在半导体制造工序之一的EDS工序中测试并引入量子技术&#xff0c;以优化制造工序中的组合。目前&#xff0c;双…

ip ssl证书怎么更换ip地址

ip ssl证书是一种数字证书&#xff0c;为只有公网ip地址的站点建立安全、加密的通信通道。它通常由权威的证书颁发机构&#xff08;CA&#xff09;颁发&#xff0c;并用于验证网站的身份和安全性。ip ssl证书的主要目的是保护敏感信息&#xff0c;如信用卡号、用户名和密码等&a…

15:00面试,15:06就出来了,问的问题太变态了。。

刚从小厂出来&#xff0c;没想到在另一家公司我又寄了。 在这家公司上班&#xff0c;每天都要加班&#xff0c;但看在钱给的比较多的份上&#xff0c;也就不太计较了。但万万没想到5月一纸通知&#xff0c;所有人不准加班了&#xff0c;不仅加班费没有了&#xff0c;薪资还要降…

【Python网络爬虫入门教程3】成为“Spider Man”的第三课:从requests到scrapy、爬取目标网站

Python 网络爬虫入门&#xff1a;Spider man的第三课 写在最前面从requests到scrapy利用scrapy爬取目标网站更多内容 结语 写在最前面 有位粉丝希望学习网络爬虫的实战技巧&#xff0c;想尝试搭建自己的爬虫环境&#xff0c;从网上抓取数据。 前面有写一篇博客分享&#xff0…

如何使用iPhone15在办公室远程观看家里群晖nas上的4k电影?

文章目录 1.使用环境要求&#xff1a;2.下载群晖Video Station&#xff1a;3.公网访问本地群晖Video Station中的电影&#xff1a;4.公网条件下使用电脑浏览器访问本地群晖video station5.公网条件下使用移动端&#xff08;搭载安卓&#xff0c;ios&#xff0c;ipados等系统的设…

Java并发(十七)----变量的线程安全分析

1、成员变量和静态变量是否线程安全 如果它们没有共享&#xff0c;则线程安全 如果它们被共享了&#xff0c;根据它们的状态是否能够改变&#xff0c;又分两种情况 如果只有读操作&#xff0c;则线程安全 如果有读写操作&#xff0c;则这段代码是临界区&#xff0c;需要考虑线…

深信服AF设置安全防护策略

以百度为例&#xff0c;禁止内网用户访问www.baidu.com 1、对象→安全策略模板→新增 2、名称自定义&#xff0c;安全配置只选择url过滤 3、点击图标→新增→设置名称及url 勾选刚刚新增的url--deny→确定 4、高级选项→确定 5、策略→安全策略→安全防护策略→新增用户防护策略…

unity 3分钟 制作粒子爆炸效果 可以用在三消消除等

思路就是&#xff1a; 有一个对象池&#xff0c;管理各种特效。 当需要播放特效时&#xff0c;触发如下代码&#xff1a; blocker为粒子生成的位置 var particles gamePools.iceParticlesPool.GetObject(); if (particles ! null) {particles.transform.position blocker…

如何通过内网穿透工具实现任意浏览器远程访问Linux本地zabbix web管理界面

前言 Zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案。能监视各种网络参数&#xff0c;保证服务器系统的安全运营&#xff1b;并提供灵活的通知机制以让系统管理员快速定位/解决存在的各种问题。 本地zabbix web管理界面限制在只能局域…

一文带你全面了解In App Bidding竞价变现 | TOPON变现干货

2021年&#xff0c;伴随着Facebook、Admob、Pangle、腾讯优量汇等国内外头部广告平台Bidding的正式推出及全面推广&#xff0c;APP广告变现正式步入bidding竞价时代。早在2020年&#xff0c;TopOn便已推出Header Bidding头部竞价功能&#xff0c;彼时主流的广告变现依然是以Wat…

集合的几个遍历方法

1. 集合的遍历 1.0 创建集合代码 List<String> strList new ArrayList<>(); strList.add("huawei"); strList.add("xiaomi"); strList.add("tencent"); strList.add("google"); strList.add("baidu");1.1 fo…

OpenCV-Python:DevCloud CodeLab介绍及学习

1.Opencv-Python演示环境 windows10 X64 企业版系统python 3.6.5 X64OpenCV-Python 3.4.2.16本地PyCharm IDE线上注册intel账号&#xff0c;使用DevCloud CodeLab 平台 2.DevCloud CodeLab是什么&#xff1f; DevCloud是一个基于云端的开发平台&#xff0c;提供了强大的计算…

dcat admin多后台和自定义登录

多后台按照教程配置 https://learnku.com/docs/dcat-admin/2.x/multi-application-multi-background/8475 自定义登录 我的新后台的登录需要另外一个用户表&#xff0c;所以原来的逻辑要修改一下。 1、首先是模板修改 参考连接 https://learnku.com/docs/dcat-admin/2.x/ba…

我有才打造专属个人或企业知识付费平台,核心功能设计

在当今信息爆炸的时代&#xff0c;知识管理已经成为了每个人必须面对的问题。然而&#xff0c;市面上的知识付费平台大多数都是通用的&#xff0c;无法满足个性化需求。 因此&#xff0c;我有才提供了一款专属定制的适合个人的知识付费平台。核心产品能力如下&#xff1a; 一…

2023年运营级网赚网盘平台搭建指南(包含源码和教程)

源码介绍 为什么要考虑自己搭建网盘呢&#xff1f;现如今&#xff0c;许多大型网盘平台都对文件添加了各种限制&#xff0c;导致很多文件容易被删除。而且&#xff0c;大部分网盘还会限制下载速度&#xff0c;如果没有开通VIP会员&#xff0c;使用起来非常不便。 本指南提供了…

tcpdump抓包命令

tcpdump抓包命令 tcpdump 的抓包保存到文件的命令参数是-w xxx.cap 抓eth1的包 tcpdump -i eth1 -w /tmp/xxx.cap抓 192.168.1.123的包 tcpdump -i eth1 host 192.168.1.123 -w /tmp/xxx.cap抓192.168.1.123的80端口的包 tcpdump -i eth1 host 192.168.1.123 and port 80 -w …