JVM虚拟机系统性学习-运行时数据区(方法区、程序计数器、直接内存)

方法区

方法区本质上是 Java 编译后代码的存储区域,存储了每一个类的结构信息,如:运行时常量池、成员变量、方法、构造方法和普通方法的字节码指令等内容

方法区主要存储的数据如下:

  • Class
    1. 类型信息,如该 Class 为 class 类、接口、枚举、注解,类的修饰符等等信息
    2. 方法信息(方法名称、方法返回值、方法参数等等)
    3. 字段信息:保存字段信息,如字段名称、字段类型、字段修饰符
    4. 类变量(静态变量):JDK1.7 之后转移到堆中存储
  • 运行时常量池(字符串常量池):JDK1.7 之后,转移到堆中存储
  • JIT 编译器编译之后的代码缓存

方法区的具体实现有两种:永久代(PermGen)、元空间(Metaspace)

  • JDK1.8 之前通过永久代实现方法区,JDK1.8 及之后使用元空间实现方法区
  • 这两种实现的不同,从存储位置来看:
    • 永久代使用的内存区域为 JVM 进程所使用的区域,大小受 JVM 限制
    • 元空间使用的内存区域为物理内存区域,大小受机器的物理内存限制
  • 从存储内容来看:
    • 永久代存储的信息上边方法区中规定的信息
    • 元空间只存储类的元信息,而静态变量和运行时常量池都转移到堆中进行存储

为什么永久代要被元空间替换?

  • 字符串存在永久代中,容易出现性能问题和永久代内存溢出。
  • 类及方法的信息等比较难确定其大小,因此对于永久代的大小指定比较困难,太小容易出现永久代溢出,太大则容易导致老年代溢出。
  • 永久代会为 GC 带来不必要的复杂度,并且回收效率偏低。

常量池

  • class常量池:一个class文件只有一个class常量池

    字面量:数值型(int、float、long、double)、双引号引起来的字符串值等

    符号引用:Class、Method、Field等

  • 运行时常量池:一个class对象有一个运行时常量池

    字面量:数值型(int、float、long、double)、双引号引起来的字符串值等

    符号引用:Class、Method、Field等

  • 字符串常量池:全局只有一个字符串常量池

    双引号引起来的字符串值

程序计数器

程序计数器用于存储当前线程所执行的字节码指令的行号,用于选取下一条需要执行的字节码指令

分支,循环,跳转,异常处理,线程回复等都需要依赖这个计数器来完成

通过程序计数器,可以在线程发生切换时,可以保存该线程执行的位置

直接内存

直接内存(也成为堆外内存)并不是虚拟机运行时数据区的一部分,直接内存的大小受限于系统的内存

在 JDK1.4 引入了 NIO 类,在 NIO 中可以通过使用 native 函数库直接分配堆外内存,然后通过存储在堆中的 DirectByteBuffer 对象作为这块内存的引用进行操作

使用直接内存,可以避免了 Java 堆和 Native 堆中来回复制数据

直接内存使用场景:

  • 有很大的数据需要存储,且数据生命周期长
  • 频繁的 IO 操作,如网络并发场景

直接内存与堆内存比较:

  • 直接内存申请空间耗费更高的性能,当频繁申请到一定量时尤为明显
  • 直接内存IO读写的性能要优于普通的堆内存,在多次读写操作的情况下差异明显

直接内存相比于堆内存,避免了数据的二次拷贝。

  • 我们先来分析不使用直接内存的情况,我们在网络发送数据需要将数据先写入 Socket 的缓冲区内,那么如果数据存储在 JVM 的堆内存中的话,会先将堆内存中的数据复制一份到直接内存中,再将直接内存中的数据写入到 Socket 缓冲区中,之后进行数据的发送

    • 为什么不能直接将 JVM 堆内存中的数据写入 Socket 缓冲区中呢?

      在 JVM 堆内存中有 GC 机制,GC 后可能会导致堆内存中数据位置发生变化,那么如果直接将 JVM 堆内存中的数据写入 Socket 缓冲区中,如果写入过程中发生 GC,导致我们需要写入的数据位置发生变化,就会将错误的数据写入 Socket 缓冲区

  • 那么如果使用直接内存的时候,我们将数据直接存放在直接内存中,在堆内存中只存放了对直接内存中数据的引用,这样在发送数据时,直接将数据从直接内存取出,放入 Socket 缓冲区中即可,减少了一次堆内存到直接内存的拷贝

在这里插入图片描述

直接内存与非直接内存性能比较:

public class ByteBufferCompare {
    public static void main(String[] args) {
        //allocateCompare(); //分配比较
        operateCompare(); //读写比较
    }

    /**
     * 直接内存 和 堆内存的 分配空间比较
     * 结论: 在数据量提升时,直接内存相比非直接内的申请,有很严重的性能问题
     */
    public static void allocateCompare() {
        int time = 1000 * 10000; //操作次数,1千万
        long st = System.currentTimeMillis();
        for (int i = 0; i < time; i++) {
            //ByteBuffer.allocate(int capacity) 分配一个新的字节缓冲区。
            ByteBuffer buffer = ByteBuffer.allocate(2); //非直接内存分配申请
        }
        long et = System.currentTimeMillis();
        System.out.println("在进行" + time + "次分配操作时,堆内存 分配耗时:" +
                (et - st) + "ms");
        long st_heap = System.currentTimeMillis();
        for (int i = 0; i < time; i++) {
            //ByteBuffer.allocateDirect(int capacity) 分配新的直接字节缓冲区。
            ByteBuffer buffer = ByteBuffer.allocateDirect(2); //直接内存分配申请
        }
        long et_direct = System.currentTimeMillis();
        System.out.println("在进行" + time + "次分配操作时,直接内存 分配耗时:" +
                (et_direct - st_heap) + "ms");
    }

    /**
     * 直接内存 和 堆内存的 读写性能比较
     * 结论:直接内存在直接的IO 操作上,在频繁的读写时 会有显著的性能提升
     */
    public static void operateCompare() {
        int time = 10 * 10000 * 10000; //操作次数,10亿
        ByteBuffer buffer = ByteBuffer.allocate(2 * time);
        long st = System.currentTimeMillis();
        for (int i = 0; i < time; i++) {
            // putChar(char value) 用来写入 char 值的相对 put 方法
            buffer.putChar('a');
        }
        buffer.flip();
        for (int i = 0; i < time; i++) {
            buffer.getChar();
        }
        long et = System.currentTimeMillis();
        System.out.println("在进行" + time + "次读写操作时,非直接内存读写耗时:" +
                (et - st) + "ms");
        ByteBuffer buffer_d = ByteBuffer.allocateDirect(2 * time);
        long st_direct = System.currentTimeMillis();
        for (int i = 0; i < time; i++) {
            // putChar(char value) 用来写入 char 值的相对 put 方法
            buffer_d.putChar('a');
        }
        buffer_d.flip();
        for (int i = 0; i < time; i++) {
            buffer_d.getChar();
        }
        long et_direct = System.currentTimeMillis();
        System.out.println("在进行" + time + "次读写操作时,直接内存读写耗时:" +
                (et_direct - st_direct) + "ms");
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/235924.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

conda 计算当前包的个数

Conda是一个强大的包管理器和环境管理器&#xff0c;它用于安装和管理来自不同源的软件包。若要计算当前conda环境中安装的包的数量&#xff0c;你可以使用以下命令&#xff1a; 首先&#xff0c;激活你想要检查的conda环境&#xff08;如果不是默认的base环境&#xff09;&am…

2023-2024年华为ICT网络赛道模拟题库

2023-2024年网络赛道模拟题库上线啦&#xff0c;全面覆盖网络&#xff0c;安全&#xff0c;vlan考点&#xff0c;都是带有解析 参赛对象及要求&#xff1a; 参赛对象&#xff1a;现有华为ICT学院及未来有意愿成为华为ICT学院的本科及高职院校在校学生。 参赛要求&#xff1a…

【XR806开发板试用】编译FreeRTOS系统

编译FreeRTOS系统&#xff0c;测试串口输出。 一、下载源码 1.1、获取源码 下载源码: rootubuntu:/home# wget https://bbs.aw-ol.com/assets/uploads/files/1693988430633-xr806_sdk.tar.gz 解压文件 rootubuntu:/home# tar xvf 1693988430633-xr806_sdk.tar.gz 1.2、获取…

用Kotlin抓取微博数据并进行热度预测

闲来无事&#xff0c;逛逛微博&#xff0c;看着每条热度很高的博文趣事&#xff0c;心想能否通过爬虫抓取微博热度并进行趋势分析&#xff0c;说干就干&#xff0c;这里需要注意的问题我会一一标注。 爬虫ip信息的设置是在爬虫程序中进行的。爬虫ip信息可以帮助爬虫程序在访问…

Kafka事务是怎么实现的?Kafka事务消息原理详解

目录 一、Kafka事务性消息1.1 介绍Kafka事务性消息1.2 事务性消息的应用场景1.3 Kafka事务性消息的优势 二、Kafka事务性消息的使用2.1 配置Kafka以支持事务性消息生产者配置消费者配置 2.2 生产者&#xff1a;发送事务性消息创建Kafka生产者开始事务发送消息提交或中止事务 2.…

Maven项目引入本地jar

Maven项目引入本地jar 1.对应maven模块项目中建lib目录&#xff0c;将jar放入进去 2.在对应的模块pom.xml中引入此依赖jar 3.在对应的maven-plugin插件打包的pom.xml中指定需要includeSystemScope为true的jar

HTML的img常见应用属性

目录 一、src、alt、width、height 的运用二、title的运用三、align的运用四、border的运用 一、src、alt、width、height 的运用 src指定图像的URL&#xff0c;即图像的路径alt指定图像的替代文本&#xff0c;当图像无法显示时&#xff0c;会显示替代文本。width指定图像的宽…

【特殊文件(一)】属性文件读写实操

文章目录 属性文件特殊文件概述Properties属性文件概述Properties属性文件读取Properties属性文件写操作 属性文件 特殊文件概述 IO流是用来读、写文件中的数据。但是我们接触到的文件大部分都是普通的文本文件&#xff0c;普通的文本文件里面的数据是没有任何格式规范的&…

E. Greedy Shopping

线段树经典题 维护最大值和最小值 还有区间和 #include<bits/stdc.h> using namespace std; using ll long long; const int N 2e510; ll w[N]; struct Segment{ll l,r;ll val,fmin,fmax;ll lz; }tr[N<<2];int n,m;void pushup(int u){tr[u].val tr[u<<…

有关光伏电站绝缘阻抗异常排查分析-安科瑞 蒋静

近几年&#xff0c;光伏发电技术迅猛发展&#xff0c;光伏扶贫电站及分布式光伏使光伏发电走进千家万户。然而光伏发电设备运行期间仍存在隐患。及时发现并解决*常见异常运行故障&#xff0c;可以很大地提高光伏发电设备可利用率&#xff0c;是保证光伏发电设备正常运行、满足收…

class074 背包dp-分组背包、完全背包【算法】

class074 背包dp-分组背包、完全背包【算法】 算法讲解074【必备】背包dp-分组背包、完全背包 code1 P1757 通天之分组背包 // 分组背包(模版) // 给定一个正数m表示背包的容量&#xff0c;有n个货物可供挑选 // 每个货物有自己的体积(容量消耗)、价值(获得收益)、组号(分组)…

“我“的测试之路,从初级测试到测试开发,往后前景...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、测试工程师的现…

PHP基础 - 数组

在PHP中,数组是一种特殊的变量类型,可以存储多个值。PHP中有多种创建数组的方法,其中之一是使用array()函数。 1. 数值数组 带有数字 ID 键的数组 <?php $scars = array("age","name","domicile"); // 使用数组函数创建一个空数组# 人…

基于SpringBoot+Vue前后端分离的景点数据分析平台(Java毕业设计)

大家好&#xff0c;我是DeBug&#xff0c;很高兴你能来阅读&#xff01;作为一名热爱编程的程序员&#xff0c;我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里&#xff0c;我将会结合实际项目经验&#xff0c;分享编程技巧、最佳实践以及解决问题的方法。无论你是…

TailwindCSS 配置可视化检查器

问题 TailwindCSS 框架为我们提供了大量默认的类和属性&#xff0c;而且开发者也能够自定义类和配置。 对于初学者来说&#xff0c;这些配置其实是比较复杂的&#xff0c;这也是tailwindcss最大的入手成本&#xff0c;开发者的记忆负担和心智负担也都比较大。 有没有办法能够…

vue3原生方法滚动列表

效果图 代码 import { ref, onBeforeUnmount, onUnmounted } from "vue"; //定时器初始化 let timer ref(null); //ref绑定初始化 let roll ref(null); //等同于vue2中的beforeDestroy onBeforeUnmount(() > {//清除定时器clearTimeout(timer.value); }); //等同…

简单实现Spring容器(二) 封装BeanDefinition对象放入Map

阶段2: // 1.编写自己的Spring容器,实现扫描包,得到bean的class对象.2.扫描将 bean 信息封装到 BeanDefinition对象,并放入到Map.思路: 1.将 bean 信息封装到 BeanDefinition对象中,再将其放入到BeanDefinitionMap集合中,集合的结构大概是 key[beanName]–value[beanDefintion…

【图对比学习】GACN:使用对抗网络增强图对比学习

#论文题目&#xff1a;Graph Contrastive Learning with Generative Adversarial Network&#xff08;使用对抗网络增强图对比学习&#xff09; #论文地址&#xff1a;https://dl.acm.org/doi/pdf/10.1145/3580305.3599370 #论文源码开源地址&#xff1a;暂无 #论文所属会议&am…

如何公网访问内网的群晖NAS随时随地远程访问本地存储的学习资源

文章目录 前言本教程解决的问题是&#xff1a;按照本教程方法操作后&#xff0c;达到的效果是前排提醒&#xff1a; 1. 搭建群晖虚拟机1.1 下载黑群晖文件vmvare虚拟机安装包1.2 安装VMware虚拟机&#xff1a;1.3 解压黑群晖虚拟机文件1.4 虚拟机初始化1.5 没有搜索到黑群晖的解…

超卓航科引领冷喷涂增材制造革新,推动先进核反应堆发展

近日&#xff0c;超卓航科凭借其卓越的冷喷涂增材制造技术&#xff0c;成为推动核能领域创新的重要力量。该公司利用冷喷涂工程技术&#xff0c;或为核反应堆的制造和修复开辟了全新的道路。 冷喷涂技术是一种颇具前景的固态粉末沉积方法&#xff0c;可用于涂层制造、增材制造和…