C/C++,树算法——二叉树的插入、移除、合并及遍历算法之源代码

1 文本格式

#include<iostream>;
using namespace std;

// A BTree node
class BTreeNode
{
    int* keys;  // An array of keys
    int t;      // Minimum degree (defines the range for number of keys)
    BTreeNode** C; // An array of child pointers
    int n;     // Current number of keys
    bool leaf; // Is true when node is leaf. Otherwise false

public:

    BTreeNode(int _t, bool _leaf);   // Constructor

    // A function to traverse all nodes in a subtree rooted with this node
    void traverse();

    // A function to search a key in subtree rooted with this node.
    BTreeNode* search(int k);   // returns NULL if k is not present.

    // A function that returns the index of the first key that is greater
    // or equal to k
    int findKey(int k);

    // A utility function to insert a new key in the subtree rooted with
    // this node. The assumption is, the node must be non-full when this
    // function is called
    void insertNonFull(int k);

    // A utility function to split the child y of this node. i is index
    // of y in child array C[].  The Child y must be full when this
    // function is called
    void splitChild(int i, BTreeNode* y);

    // A wrapper function to remove the key k in subtree rooted with
    // this node.
    void remove(int k);

    // A function to remove the key present in idx-th position in
    // this node which is a leaf
    void removeFromLeaf(int idx);

    // A function to remove the key present in idx-th position in
    // this node which is a non-leaf node
    void removeFromNonLeaf(int idx);

    // A function to get the predecessor of the key- where the key
    // is present in the idx-th position in the node
    int getPred(int idx);

    // A function to get the successor of the key- where the key
    // is present in the idx-th position in the node
    int getSucc(int idx);

    // A function to fill up the child node present in the idx-th
    // position in the C[] array if that child has less than t-1 keys
    void fill(int idx);

    // A function to borrow a key from the C[idx-1]-th node and place
    // it in C[idx]th node
    void borrowFromPrev(int idx);

    // A function to borrow a key from the C[idx+1]-th node and place it
    // in C[idx]th node
    void borrowFromNext(int idx);

    // A function to merge idx-th child of the node with (idx+1)th child of
    // the node
    void merge(int idx);

    // Make BTree friend of this so that we can access private members of
    // this class in BTree functions
    friend class BTree;
};

class BTree
{
    BTreeNode* root; // Pointer to root node
    int t;  // Minimum degree
public:

    // Constructor (Initializes tree as empty)
    BTree(int _t)
    {
        root = NULL;
        t = _t;
    }

    void traverse()
    {
        if (root != NULL) root->traverse();
    }

    // function to search a key in this tree
    BTreeNode* search(int k)
    {
        return (root == NULL) ? NULL : root->search(k);
    }

    // The main function that inserts a new key in this B-Tree
    void insert(int k);

    // The main function that removes a new key in thie B-Tree
    void remove(int k);

};

BTreeNode::BTreeNode(int t1, bool leaf1)
{
    // Copy the given minimum degree and leaf property
    t = t1;
    leaf = leaf1;

    // Allocate memory for maximum number of possible keys
    // and child pointers
    keys = new int[2 * t - 1];
    C = new BTreeNode * [2 * t];

    // Initialize the number of keys as 0
    n = 0;
}

// A utility function that returns the index of the first key that is
// greater than or equal to k
int BTreeNode::findKey(int k)
{
    int idx = 0;
    while (idx < n && keys[idx] < k)
        ++idx;
    return idx;
}

// A function to remove the key k from the sub-tree rooted with this node
void BTreeNode::remove(int k)
{
    int idx = findKey(k);

    // The key to be removed is present in this node
    if (idx < n && keys[idx] == k)
    {

        // If the node is a leaf node - removeFromLeaf is called
        // Otherwise, removeFromNonLeaf function is called
        if (leaf)
            removeFromLeaf(idx);
        else
            removeFromNonLeaf(idx);
    }
    else
    {

        // If this node is a leaf node, then the key is not present in tree
        if (leaf)
        {
            cout << " The key" << k << " is does not exist in the tree\n";
            return;
        }

        // The key to be removed is present in the sub-tree rooted with this node
        // The flag indicates whether the key is present in the sub-tree rooted
        // with the last child of this node
        bool flag = ((idx == n) ? true : false);

        // If the child where the key is supposed to exist has less that t keys,
        // we fill that child
        if (C[idx]->n < t)
            fill(idx);

        // If the last child has been merged, it must have merged with the previous
        // child and so we recurse on the (idx-1)th child. Else, we recurse on the
        // (idx)th child which now has atleast t keys
        if (flag && idx > n)
            C[idx - 1]->remove(k);
        else
            C[idx]->remove(k);
    }
    return;
}

// A function to remove the idx-th key from this node - which is a leaf node
void BTreeNode::removeFromLeaf(int idx)
{

    // Move all the keys after the idx-th pos one place backward
    for (int i = idx + 1; i < n; ++i)
        keys[i - 1] = keys[i];

    // Reduce the count of keys
    n--;

    return;
}

// A function to remove the idx-th key from this node - which is a non-leaf node
void BTreeNode::removeFromNonLeaf(int idx)
{

    int k = keys[idx];

    // If the child that precedes k (C[idx]) has atleast t keys,
    // find the predecessor 'pred' of k in the subtree rooted at
    // C[idx]. Replace k by pred. Recursively delete pred
    // in C[idx]
    if (C[idx]->n > = t)
    {
        int pred = getPred(idx);
        keys[idx] = pred;
        C[idx]->remove(pred);
    }

    // If the child C[idx] has less that t keys, examine C[idx+1].
    // If C[idx+1] has atleast t keys, find the successor 'succ' of k in
    // the subtree rooted at C[idx+1]
    // Replace k by succ
    // Recursively delete succ in C[idx+1]
    else if (C[idx + 1]->n > = t)
    {
        int succ = getSucc(idx);
        keys[idx] = succ;
        C[idx + 1]->remove(succ);
    }

    // If both C[idx] and C[idx+1] has less that t keys,merge k and all of C[idx+1]
    // into C[idx]
    // Now C[idx] contains 2t-1 keys
    // Free C[idx+1] and recursively delete k from C[idx]
    else
    {
        merge(idx);
        C[idx]->remove(k);
    }
    return;
}

// A function to get predecessor of keys[idx]
int BTreeNode::getPred(int idx)
{
    // Keep moving to the right most node until we reach a leaf
    BTreeNode* cur = C[idx];
    while (!cur->leaf)
        cur = cur->C[cur->n];

    // Return the last key of the leaf
    return cur->keys[cur->n - 1];
}

int BTreeNode::getSucc(int idx)
{

    // Keep moving the left most node starting from C[idx+1] until we reach a leaf
    BTreeNode* cur = C[idx + 1];
    while (!cur->leaf)
        cur = cur->C[0];

    // Return the first key of the leaf
    return cur->keys[0];
}

// A function to fill child C[idx] which has less than t-1 keys
void BTreeNode::fill(int idx)
{

    // If the previous child(C[idx-1]) has more than t-1 keys, borrow a key
    // from that child
    if (idx != 0 && C[idx - 1]->n > = t)
        borrowFromPrev(idx);

    // If the next child(C[idx+1]) has more than t-1 keys, borrow a key
    // from that child
    else if (idx != n && C[idx + 1]->n > = t)
        borrowFromNext(idx);

    // Merge C[idx] with its sibling
    // If C[idx] is the last child, merge it with its previous sibling
    // Otherwise merge it with its next sibling
    else
    {
        if (idx != n)
            merge(idx);
        else
            merge(idx - 1);
    }
    return;
}

// A function to borrow a key from C[idx-1] and insert it
// into C[idx]
void BTreeNode::borrowFromPrev(int idx)
{

    BTreeNode* child = C[idx];
    BTreeNode* sibling = C[idx - 1];

    // The last key from C[idx-1] goes up to the parent and key[idx-1]
    // from parent is inserted as the first key in C[idx]. Thus, the  loses
    // sibling one key and child gains one key

    // Moving all key in C[idx] one step ahead
    for (int i = child->n - 1; i > = 0; --i)
        child->keys[i + 1] = child->keys[i];

    // If C[idx] is not a leaf, move all its child pointers one step ahead
    if (!child->leaf)
    {
        for (int i = child->n; i > = 0; --i)
            child->C[i + 1] = child->C[i];
    }

    // Setting child's first key equal to keys[idx-1] from the current node
    child->keys[0] = keys[idx - 1];

    // Moving sibling's last child as C[idx]'s first child
    if (!child->leaf)
        child->C[0] = sibling->C[sibling->n];

    // Moving the key from the sibling to the parent
    // This reduces the number of keys in the sibling
    keys[idx - 1] = sibling->keys[sibling->n - 1];

    child->n += 1;
    sibling->n -= 1;

    return;
}

// A function to borrow a key from the C[idx+1] and place
// it in C[idx]
void BTreeNode::borrowFromNext(int idx)
{

    BTreeNode* child = C[idx];
    BTreeNode* sibling = C[idx + 1];

    // keys[idx] is inserted as the last key in C[idx]
    child->keys[(child->n)] = keys[idx];

    // Sibling's first child is inserted as the last child
    // into C[idx]
    if (!(child->leaf))
        child->C[(child->n) + 1] = sibling->C[0];

    //The first key from sibling is inserted into keys[idx]
    keys[idx] = sibling->keys[0];

    // Moving all keys in sibling one step behind
    for (int i = 1; i < sibling->n; ++i)
        sibling->keys[i - 1] = sibling->keys[i];

    // Moving the child pointers one step behind
    if (!sibling->leaf)
    {
        for (int i = 1; i < = sibling->n; ++i)
            sibling->C[i - 1] = sibling->C[i];
    }

    // Increasing and decreasing the key count of C[idx] and C[idx+1]
    // respectively
    child->n += 1;
    sibling->n -= 1;

    return;
}

// A function to merge C[idx] with C[idx+1]
// C[idx+1] is freed after merging
void BTreeNode::merge(int idx)
{
    BTreeNode* child = C[idx];
    BTreeNode* sibling = C[idx + 1];

    // Pulling a key from the current node and inserting it into (t-1)th
    // position of C[idx]
    child->keys[t - 1] = keys[idx];

    // Copying the keys from C[idx+1] to C[idx] at the end
    for (int i = 0; i < sibling->n; ++i)
        child->keys[i + t] = sibling->keys[i];

    // Copying the child pointers from C[idx+1] to C[idx]
    if (!child->leaf)
    {
        for (int i = 0; i < = sibling->n; ++i)
            child->C[i + t] = sibling->C[i];
    }

    // Moving all keys after idx in the current node one step before -
    // to fill the gap created by moving keys[idx] to C[idx]
    for (int i = idx + 1; i < n; ++i)
        keys[i - 1] = keys[i];

    // Moving the child pointers after (idx+1) in the current node one
    // step before
    for (int i = idx + 2; i < = n; ++i)
        C[i - 1] = C[i];

    // Updating the key count of child and the current node
    child->n += sibling->n + 1;
    n--;

    // Freeing the memory occupied by sibling
    delete(sibling);
    return;
}

// The main function that inserts a new key in this B-Tree
void BTree::insert(int k)
{
    // If tree is empty
    if (root == NULL)
    {
        // Allocate memory for root
        root = new BTreeNode(t, true);
        root->keys[0] = k;  // Insert key
        root->n = 1;  // Update number of keys in root
    }
    else // If tree is not empty
    {
        // If root is full, then tree grows in height
        if (root->n == 2 * t - 1)
        {
            // Allocate memory for new root
            BTreeNode* s = new BTreeNode(t, false);

            // Make old root as child of new root
            s->C[0] = root;

            // Split the old root and move 1 key to the new root
            s->splitChild(0, root);

            // New root has two children now.  Decide which of the
            // two children is going to have new key
            int i = 0;
            if (s->keys[0] < k)
                i++;
            s->C[i]->insertNonFull(k);

            // Change root
            root = s;
        }
        else  // If root is not full, call insertNonFull for root
            root->insertNonFull(k);
    }
}

// A utility function to insert a new key in this node
// The assumption is, the node must be non-full when this
// function is called
void BTreeNode::insertNonFull(int k)
{
    // Initialize index as index of rightmost element
    int i = n - 1;

    // If this is a leaf node
    if (leaf == true)
    {
        // The following loop does two things
        // a) Finds the location of new key to be inserted
        // b) Moves all greater keys to one place ahead
        while (i > = 0 && keys[i] > k)
        {
            keys[i + 1] = keys[i];
            i--;
        }

        // Insert the new key at found location
        keys[i + 1] = k;
        n = n + 1;
    }
    else // If this node is not leaf
    {
        // Find the child which is going to have the new key
        while (i > = 0 && keys[i] > k)
            i--;

        // See if the found child is full
        if (C[i + 1]->n == 2 * t - 1)
        {
            // If the child is full, then split it
            splitChild(i + 1, C[i + 1]);

            // After split, the middle key of C[i] goes up and
            // C[i] is splitted into two.  See which of the two
            // is going to have the new key
            if (keys[i + 1] < k)
                i++;
        }
        C[i + 1]->insertNonFull(k);
    }
}

// A utility function to split the child y of this node
// Note that y must be full when this function is called
void BTreeNode::splitChild(int i, BTreeNode* y)
{
    // Create a new node which is going to store (t-1) keys
    // of y
    BTreeNode* z = new BTreeNode(y->t, y->leaf);
    z->n = t - 1;

    // Copy the last (t-1) keys of y to z
    for (int j = 0; j < t - 1; j++)
        z->keys[j] = y->keys[j + t];

    // Copy the last t children of y to z
    if (y->leaf == false)
    {
        for (int j = 0; j < t; j++)
            z->C[j] = y->C[j + t];
    }

    // Reduce the number of keys in y
    y->n = t - 1;

    // Since this node is going to have a new child,
    // create space of new child
    for (int j = n; j > = i + 1; j--)
        C[j + 1] = C[j];

    // Link the new child to this node
    C[i + 1] = z;

    // A key of y will move to this node. Find location of
    // new key and move all greater keys one space ahead
    for (int j = n - 1; j > = i; j--)
        keys[j + 1] = keys[j];

    // Copy the middle key of y to this node
    keys[i] = y->keys[t - 1];

    // Increment count of keys in this node
    n = n + 1;
}

// Function to traverse all nodes in a subtree rooted with this node
void BTreeNode::traverse()
{
    // There are n keys and n+1 children, traverse through n keys
    // and first n children
    int i;
    for (i = 0; i < n; i++)
    {
        // If this is not leaf, then before printing key[i],
        // traverse the subtree rooted with child C[i].
        if (leaf == false)
            C[i]->traverse();
        cout << " " << keys[i];
    }

    // Print the subtree rooted with last child
    if (leaf == false)
        C[i]->traverse();
}

// Function to search key k in subtree rooted with this node
BTreeNode* BTreeNode::search(int k)
{
    // Find the first key greater than or equal to k
    int i = 0;
    while (i< n && k > keys[i])
        i++;

    // If the found key is equal to k, return this node
    if (keys[i] == k)
        return this;

    // If key is not found here and this is a leaf node
    if (leaf == true)
        return NULL;

    // Go to the appropriate child
    return C[i]->search(k);
}

void BTree::remove(int k)
{
    if (!root)
    {
        cout << " The tree is empty\n";
        return;
    }

    // Call the remove function for root
    root->remove(k);

    // If the root node has 0 keys, make its first child as the new root
    //  if it has a child, otherwise set root as NULL
    if (root->n == 0)
    {
        BTreeNode* tmp = root;
        if (root->leaf)
            root = NULL;
        else
            root = root->C[0];

        // Free the old root
        delete tmp;
    }
    return;
}

// Driver program to test above functions
int main()
{
    BTree t(3); // A B-Tree with minimum degree 3

    t.insert(1);
    t.insert(3);
    t.insert(7);
    t.insert(10);
    t.insert(11);
    t.insert(13);
    t.insert(14);
    t.insert(15);
    t.insert(18);
    t.insert(16);
    t.insert(19);
    t.insert(24);
    t.insert(25);
    t.insert(26);
    t.insert(21);
    t.insert(4);
    t.insert(5);
    t.insert(20);
    t.insert(22);
    t.insert(2);
    t.insert(17);
    t.insert(12);
    t.insert(6);

    cout << " Traversal of tree constructed is\n";
    t.traverse();
    cout << endl;

    t.remove(6);
    cout << " Traversal of tree after removing 6\n ";
    t.traverse();
    cout << endl;

    t.remove(13);
    cout << " Traversal of tree after removing 13\n ";
    t.traverse();
    cout << endl;

    t.remove(7);
    cout << " Traversal of tree after removing 7\n ";
    t.traverse();
    cout << endl;

    t.remove(4);
    cout << " Traversal of tree after removing 4\n ";
    t.traverse();
    cout << endl;

    t.remove(2);
    cout << " Traversal of tree after removing 2\n ";
    t.traverse();
    cout << endl;

    t.remove(16);
    cout << " Traversal of tree after removing 16\n ";
    t.traverse();
    cout << endl;

    return 0;
}

2 代码格式

#include<iostream>;
using namespace std;

// A BTree node
class BTreeNode
{
	int* keys;  // An array of keys
	int t;      // Minimum degree (defines the range for number of keys)
	BTreeNode** C; // An array of child pointers
	int n;     // Current number of keys
	bool leaf; // Is true when node is leaf. Otherwise false

public:

	BTreeNode(int _t, bool _leaf);   // Constructor

	// A function to traverse all nodes in a subtree rooted with this node
	void traverse();

	// A function to search a key in subtree rooted with this node.
	BTreeNode* search(int k);   // returns NULL if k is not present.

	// A function that returns the index of the first key that is greater
	// or equal to k
	int findKey(int k);

	// A utility function to insert a new key in the subtree rooted with
	// this node. The assumption is, the node must be non-full when this
	// function is called
	void insertNonFull(int k);

	// A utility function to split the child y of this node. i is index
	// of y in child array C[].  The Child y must be full when this
	// function is called
	void splitChild(int i, BTreeNode* y);

	// A wrapper function to remove the key k in subtree rooted with
	// this node.
	void remove(int k);

	// A function to remove the key present in idx-th position in
	// this node which is a leaf
	void removeFromLeaf(int idx);

	// A function to remove the key present in idx-th position in
	// this node which is a non-leaf node
	void removeFromNonLeaf(int idx);

	// A function to get the predecessor of the key- where the key
	// is present in the idx-th position in the node
	int getPred(int idx);

	// A function to get the successor of the key- where the key
	// is present in the idx-th position in the node
	int getSucc(int idx);

	// A function to fill up the child node present in the idx-th
	// position in the C[] array if that child has less than t-1 keys
	void fill(int idx);

	// A function to borrow a key from the C[idx-1]-th node and place
	// it in C[idx]th node
	void borrowFromPrev(int idx);

	// A function to borrow a key from the C[idx+1]-th node and place it
	// in C[idx]th node
	void borrowFromNext(int idx);

	// A function to merge idx-th child of the node with (idx+1)th child of
	// the node
	void merge(int idx);

	// Make BTree friend of this so that we can access private members of
	// this class in BTree functions
	friend class BTree;
};

class BTree
{
	BTreeNode* root; // Pointer to root node
	int t;  // Minimum degree
public:

	// Constructor (Initializes tree as empty)
	BTree(int _t)
	{
		root = NULL;
		t = _t;
	}

	void traverse()
	{
		if (root != NULL) root->traverse();
	}

	// function to search a key in this tree
	BTreeNode* search(int k)
	{
		return (root == NULL) ? NULL : root->search(k);
	}

	// The main function that inserts a new key in this B-Tree
	void insert(int k);

	// The main function that removes a new key in thie B-Tree
	void remove(int k);

};

BTreeNode::BTreeNode(int t1, bool leaf1)
{
	// Copy the given minimum degree and leaf property
	t = t1;
	leaf = leaf1;

	// Allocate memory for maximum number of possible keys
	// and child pointers
	keys = new int[2 * t - 1];
	C = new BTreeNode * [2 * t];

	// Initialize the number of keys as 0
	n = 0;
}

// A utility function that returns the index of the first key that is
// greater than or equal to k
int BTreeNode::findKey(int k)
{
	int idx = 0;
	while (idx < n && keys[idx] < k)
		++idx;
	return idx;
}

// A function to remove the key k from the sub-tree rooted with this node
void BTreeNode::remove(int k)
{
	int idx = findKey(k);

	// The key to be removed is present in this node
	if (idx < n && keys[idx] == k)
	{

		// If the node is a leaf node - removeFromLeaf is called
		// Otherwise, removeFromNonLeaf function is called
		if (leaf)
			removeFromLeaf(idx);
		else
			removeFromNonLeaf(idx);
	}
	else
	{

		// If this node is a leaf node, then the key is not present in tree
		if (leaf)
		{
			cout << " The key" << k << " is does not exist in the tree\n";
			return;
		}

		// The key to be removed is present in the sub-tree rooted with this node
		// The flag indicates whether the key is present in the sub-tree rooted
		// with the last child of this node
		bool flag = ((idx == n) ? true : false);

		// If the child where the key is supposed to exist has less that t keys,
		// we fill that child
		if (C[idx]->n < t)
			fill(idx);

		// If the last child has been merged, it must have merged with the previous
		// child and so we recurse on the (idx-1)th child. Else, we recurse on the
		// (idx)th child which now has atleast t keys
		if (flag && idx > n)
			C[idx - 1]->remove(k);
		else
			C[idx]->remove(k);
	}
	return;
}

// A function to remove the idx-th key from this node - which is a leaf node
void BTreeNode::removeFromLeaf(int idx)
{

	// Move all the keys after the idx-th pos one place backward
	for (int i = idx + 1; i < n; ++i)
		keys[i - 1] = keys[i];

	// Reduce the count of keys
	n--;

	return;
}

// A function to remove the idx-th key from this node - which is a non-leaf node
void BTreeNode::removeFromNonLeaf(int idx)
{

	int k = keys[idx];

	// If the child that precedes k (C[idx]) has atleast t keys,
	// find the predecessor 'pred' of k in the subtree rooted at
	// C[idx]. Replace k by pred. Recursively delete pred
	// in C[idx]
	if (C[idx]->n > = t)
	{
		int pred = getPred(idx);
		keys[idx] = pred;
		C[idx]->remove(pred);
	}

	// If the child C[idx] has less that t keys, examine C[idx+1].
	// If C[idx+1] has atleast t keys, find the successor 'succ' of k in
	// the subtree rooted at C[idx+1]
	// Replace k by succ
	// Recursively delete succ in C[idx+1]
	else if (C[idx + 1]->n > = t)
	{
		int succ = getSucc(idx);
		keys[idx] = succ;
		C[idx + 1]->remove(succ);
	}

	// If both C[idx] and C[idx+1] has less that t keys,merge k and all of C[idx+1]
	// into C[idx]
	// Now C[idx] contains 2t-1 keys
	// Free C[idx+1] and recursively delete k from C[idx]
	else
	{
		merge(idx);
		C[idx]->remove(k);
	}
	return;
}

// A function to get predecessor of keys[idx]
int BTreeNode::getPred(int idx)
{
	// Keep moving to the right most node until we reach a leaf
	BTreeNode* cur = C[idx];
	while (!cur->leaf)
		cur = cur->C[cur->n];

	// Return the last key of the leaf
	return cur->keys[cur->n - 1];
}

int BTreeNode::getSucc(int idx)
{

	// Keep moving the left most node starting from C[idx+1] until we reach a leaf
	BTreeNode* cur = C[idx + 1];
	while (!cur->leaf)
		cur = cur->C[0];

	// Return the first key of the leaf
	return cur->keys[0];
}

// A function to fill child C[idx] which has less than t-1 keys
void BTreeNode::fill(int idx)
{

	// If the previous child(C[idx-1]) has more than t-1 keys, borrow a key
	// from that child
	if (idx != 0 && C[idx - 1]->n > = t)
		borrowFromPrev(idx);

	// If the next child(C[idx+1]) has more than t-1 keys, borrow a key
	// from that child
	else if (idx != n && C[idx + 1]->n > = t)
		borrowFromNext(idx);

	// Merge C[idx] with its sibling
	// If C[idx] is the last child, merge it with its previous sibling
	// Otherwise merge it with its next sibling
	else
	{
		if (idx != n)
			merge(idx);
		else
			merge(idx - 1);
	}
	return;
}

// A function to borrow a key from C[idx-1] and insert it
// into C[idx]
void BTreeNode::borrowFromPrev(int idx)
{

	BTreeNode* child = C[idx];
	BTreeNode* sibling = C[idx - 1];

	// The last key from C[idx-1] goes up to the parent and key[idx-1]
	// from parent is inserted as the first key in C[idx]. Thus, the  loses
	// sibling one key and child gains one key

	// Moving all key in C[idx] one step ahead
	for (int i = child->n - 1; i > = 0; --i)
		child->keys[i + 1] = child->keys[i];

	// If C[idx] is not a leaf, move all its child pointers one step ahead
	if (!child->leaf)
	{
		for (int i = child->n; i > = 0; --i)
			child->C[i + 1] = child->C[i];
	}

	// Setting child's first key equal to keys[idx-1] from the current node
	child->keys[0] = keys[idx - 1];

	// Moving sibling's last child as C[idx]'s first child
	if (!child->leaf)
		child->C[0] = sibling->C[sibling->n];

	// Moving the key from the sibling to the parent
	// This reduces the number of keys in the sibling
	keys[idx - 1] = sibling->keys[sibling->n - 1];

	child->n += 1;
	sibling->n -= 1;

	return;
}

// A function to borrow a key from the C[idx+1] and place
// it in C[idx]
void BTreeNode::borrowFromNext(int idx)
{

	BTreeNode* child = C[idx];
	BTreeNode* sibling = C[idx + 1];

	// keys[idx] is inserted as the last key in C[idx]
	child->keys[(child->n)] = keys[idx];

	// Sibling's first child is inserted as the last child
	// into C[idx]
	if (!(child->leaf))
		child->C[(child->n) + 1] = sibling->C[0];

	//The first key from sibling is inserted into keys[idx]
	keys[idx] = sibling->keys[0];

	// Moving all keys in sibling one step behind
	for (int i = 1; i < sibling->n; ++i)
		sibling->keys[i - 1] = sibling->keys[i];

	// Moving the child pointers one step behind
	if (!sibling->leaf)
	{
		for (int i = 1; i < = sibling->n; ++i)
			sibling->C[i - 1] = sibling->C[i];
	}

	// Increasing and decreasing the key count of C[idx] and C[idx+1]
	// respectively
	child->n += 1;
	sibling->n -= 1;

	return;
}

// A function to merge C[idx] with C[idx+1]
// C[idx+1] is freed after merging
void BTreeNode::merge(int idx)
{
	BTreeNode* child = C[idx];
	BTreeNode* sibling = C[idx + 1];

	// Pulling a key from the current node and inserting it into (t-1)th
	// position of C[idx]
	child->keys[t - 1] = keys[idx];

	// Copying the keys from C[idx+1] to C[idx] at the end
	for (int i = 0; i < sibling->n; ++i)
		child->keys[i + t] = sibling->keys[i];

	// Copying the child pointers from C[idx+1] to C[idx]
	if (!child->leaf)
	{
		for (int i = 0; i < = sibling->n; ++i)
			child->C[i + t] = sibling->C[i];
	}

	// Moving all keys after idx in the current node one step before -
	// to fill the gap created by moving keys[idx] to C[idx]
	for (int i = idx + 1; i < n; ++i)
		keys[i - 1] = keys[i];

	// Moving the child pointers after (idx+1) in the current node one
	// step before
	for (int i = idx + 2; i < = n; ++i)
		C[i - 1] = C[i];

	// Updating the key count of child and the current node
	child->n += sibling->n + 1;
	n--;

	// Freeing the memory occupied by sibling
	delete(sibling);
	return;
}

// The main function that inserts a new key in this B-Tree
void BTree::insert(int k)
{
	// If tree is empty
	if (root == NULL)
	{
		// Allocate memory for root
		root = new BTreeNode(t, true);
		root->keys[0] = k;  // Insert key
		root->n = 1;  // Update number of keys in root
	}
	else // If tree is not empty
	{
		// If root is full, then tree grows in height
		if (root->n == 2 * t - 1)
		{
			// Allocate memory for new root
			BTreeNode* s = new BTreeNode(t, false);

			// Make old root as child of new root
			s->C[0] = root;

			// Split the old root and move 1 key to the new root
			s->splitChild(0, root);

			// New root has two children now.  Decide which of the
			// two children is going to have new key
			int i = 0;
			if (s->keys[0] < k)
				i++;
			s->C[i]->insertNonFull(k);

			// Change root
			root = s;
		}
		else  // If root is not full, call insertNonFull for root
			root->insertNonFull(k);
	}
}

// A utility function to insert a new key in this node
// The assumption is, the node must be non-full when this
// function is called
void BTreeNode::insertNonFull(int k)
{
	// Initialize index as index of rightmost element
	int i = n - 1;

	// If this is a leaf node
	if (leaf == true)
	{
		// The following loop does two things
		// a) Finds the location of new key to be inserted
		// b) Moves all greater keys to one place ahead
		while (i > = 0 && keys[i] > k)
		{
			keys[i + 1] = keys[i];
			i--;
		}

		// Insert the new key at found location
		keys[i + 1] = k;
		n = n + 1;
	}
	else // If this node is not leaf
	{
		// Find the child which is going to have the new key
		while (i > = 0 && keys[i] > k)
			i--;

		// See if the found child is full
		if (C[i + 1]->n == 2 * t - 1)
		{
			// If the child is full, then split it
			splitChild(i + 1, C[i + 1]);

			// After split, the middle key of C[i] goes up and
			// C[i] is splitted into two.  See which of the two
			// is going to have the new key
			if (keys[i + 1] < k)
				i++;
		}
		C[i + 1]->insertNonFull(k);
	}
}

// A utility function to split the child y of this node
// Note that y must be full when this function is called
void BTreeNode::splitChild(int i, BTreeNode* y)
{
	// Create a new node which is going to store (t-1) keys
	// of y
	BTreeNode* z = new BTreeNode(y->t, y->leaf);
	z->n = t - 1;

	// Copy the last (t-1) keys of y to z
	for (int j = 0; j < t - 1; j++)
		z->keys[j] = y->keys[j + t];

	// Copy the last t children of y to z
	if (y->leaf == false)
	{
		for (int j = 0; j < t; j++)
			z->C[j] = y->C[j + t];
	}

	// Reduce the number of keys in y
	y->n = t - 1;

	// Since this node is going to have a new child,
	// create space of new child
	for (int j = n; j > = i + 1; j--)
		C[j + 1] = C[j];

	// Link the new child to this node
	C[i + 1] = z;

	// A key of y will move to this node. Find location of
	// new key and move all greater keys one space ahead
	for (int j = n - 1; j > = i; j--)
		keys[j + 1] = keys[j];

	// Copy the middle key of y to this node
	keys[i] = y->keys[t - 1];

	// Increment count of keys in this node
	n = n + 1;
}

// Function to traverse all nodes in a subtree rooted with this node
void BTreeNode::traverse()
{
	// There are n keys and n+1 children, traverse through n keys
	// and first n children
	int i;
	for (i = 0; i < n; i++)
	{
		// If this is not leaf, then before printing key[i],
		// traverse the subtree rooted with child C[i].
		if (leaf == false)
			C[i]->traverse();
		cout << " " << keys[i];
	}

	// Print the subtree rooted with last child
	if (leaf == false)
		C[i]->traverse();
}

// Function to search key k in subtree rooted with this node
BTreeNode* BTreeNode::search(int k)
{
	// Find the first key greater than or equal to k
	int i = 0;
	while (i< n && k > keys[i])
		i++;

	// If the found key is equal to k, return this node
	if (keys[i] == k)
		return this;

	// If key is not found here and this is a leaf node
	if (leaf == true)
		return NULL;

	// Go to the appropriate child
	return C[i]->search(k);
}

void BTree::remove(int k)
{
	if (!root)
	{
		cout << " The tree is empty\n";
		return;
	}

	// Call the remove function for root
	root->remove(k);

	// If the root node has 0 keys, make its first child as the new root
	//  if it has a child, otherwise set root as NULL
	if (root->n == 0)
	{
		BTreeNode* tmp = root;
		if (root->leaf)
			root = NULL;
		else
			root = root->C[0];

		// Free the old root
		delete tmp;
	}
	return;
}

// Driver program to test above functions
int main()
{
	BTree t(3); // A B-Tree with minimum degree 3

	t.insert(1);
	t.insert(3);
	t.insert(7);
	t.insert(10);
	t.insert(11);
	t.insert(13);
	t.insert(14);
	t.insert(15);
	t.insert(18);
	t.insert(16);
	t.insert(19);
	t.insert(24);
	t.insert(25);
	t.insert(26);
	t.insert(21);
	t.insert(4);
	t.insert(5);
	t.insert(20);
	t.insert(22);
	t.insert(2);
	t.insert(17);
	t.insert(12);
	t.insert(6);

	cout << " Traversal of tree constructed is\n";
	t.traverse();
	cout << endl;

	t.remove(6);
	cout << " Traversal of tree after removing 6\n ";
	t.traverse();
	cout << endl;

	t.remove(13);
	cout << " Traversal of tree after removing 13\n ";
	t.traverse();
	cout << endl;

	t.remove(7);
	cout << " Traversal of tree after removing 7\n ";
	t.traverse();
	cout << endl;

	t.remove(4);
	cout << " Traversal of tree after removing 4\n ";
	t.traverse();
	cout << endl;

	t.remove(2);
	cout << " Traversal of tree after removing 2\n ";
	t.traverse();
	cout << endl;

	t.remove(16);
	cout << " Traversal of tree after removing 16\n ";
	t.traverse();
	cout << endl;

	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/232015.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SAP FICO S_ALR_87013611 报表列宽度的调整

如何去调整&#xff1f; 选中对应的列 菜单-设置-列属性 连起来

十一、了解分布式计算

1、什么是&#xff08;数据&#xff09;计算&#xff1f; 2、分布式(数据)计算 &#xff08;1&#xff09;概念 顾名思义&#xff0c;分布式计算&#xff0c;即以分布式的形式完成数据的统计&#xff0c;得到需要的结果。 分布式数据计算&#xff0c;顾名思义&#xff0c;就是…

idea开发环境配置

idea重新安装后&#xff0c;配置的东西还挺多的&#xff0c;这里简单记录一下。 1、基础配置 1.1、主题、背景、主题字体大小 1.2、默认字体设置 控制台默认编码设置&#xff1a; 全局文件默认编码设置&#xff1a; 2、构建、编译、部署配置 说明&#xff1a;本地装了JD…

【Java基础篇 | 面向对象】—— 聊聊什么是接口(下篇)

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【JavaSE_primary】 本专栏旨在分享学习JavaSE的一点学习心得&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 上篇&#xff08;【Ja…

学习Linux(1)-开始前的准备

一、Linux介绍 如图,“Linux的发行版说简单点就是将Linux内核与应用软件做一个打包”&#xff0c;所以&#xff0c;我们要学习Linux&#xff0c;就要选择一个趁手的应用软件&#xff0c;通常使用较多的有centerOs、Ubuntu。本文将基于centerOs6进行学习。 二、安装环境 使用Li…

认识线程和创建线程

目录 1.认识多线程 1.1线程的概念 1.2进程和线程 1.2.1进程和线程用图描述关系 1.2.2进程和线程的区别 1.3Java 的线程和操作系统线程的关系 2.创建线程 2.1继承 Thread 类 2.2实现 Runnable 接口 2.3匿名内部类创建 Thread 子类对象 2.4匿名内部类创建 Runnable 子类对…

SAP UI5 walkthrough step7 JSON Model

这个章节&#xff0c;帮助我们理解MVC架构中的M 我们将会在APP中新增一个输入框&#xff0c;并将输入的值绑定到model&#xff0c;然后将其作为描述&#xff0c;直接显示在输入框的右边 首先修改App.controllers.js webapp/controller/App.controller.js sap.ui.define([&…

教师需要什么技能?

作为一名老师&#xff0c;需要掌握许多技能&#xff0c;以便能够成功地教育和指导学生。以下是一些关键技能&#xff1a; 1.教学技能&#xff1a;老师需要有深入的学科知识和教学经验&#xff0c;以便能够有效地传授知识。教师应该了解如何设计和执行教学计划&#xff0c;制定课…

Java、JDK、JRE、JVM

Java、JDK、JRE、JVM 一、 Java 广义上看&#xff0c;Kotlin、JRuby等运行于Java虚拟机上的编程语言以及相关的程序都属于Java体系的一员。从传统意义上看&#xff0c;Java社区规定的Java技术体系包括以下几个部分&#xff1a; Java程序设计语言各种硬件平台上的Java虚拟机实…

JFrog----基于Docker方式部署JFrog

文章目录 1 下载镜像2 创建数据挂载目录3 启动 JFrog服务4 浏览器登录5 重置密码6 设置 license7 设置 Base URL8 设置代理9 选择仓库类型10 预览11 查看结果 1 下载镜像 免费版 docker pull docker.bintray.io/jfrog/artifactory-oss体验版&#xff1a; docker pull releas…

论文导读|10月MSOM文章精选:智慧医疗

编者按 在“10月MSOM文章精选&#xff1a;智慧医疗”中&#xff0c;我们有主题、有针对性地选择了MSOM期刊杂志中一些有关智慧医疗领域的有趣文章&#xff0c;不但对文章的内容进行了概括与点评&#xff0c;而且也对文章的结构进行了梳理&#xff0c;旨在激发广大读者的阅读兴趣…

vue预览pdf,放大缩小拖动,dialog拖动,父页面滚动

公共组件部分代码 main.js import draggable from /directive/drag/index Vue.use(draggable) pdf组件部分代码

1-3、Java反编译

语雀原文链接 文章目录 1、JD-GUI反编译下载1-1、打开class文件无反应 1、JD-GUI反编译下载 http://java-decompiler.github.io jd-gui-windows-1.6.6.zip 1-1、打开class文件无反应 目前是可以正常打jar包文件&#xff0c;但是在直接打开.class文件时软件会卡住。首先将要…

【ArcGIS Pro微课1000例】0051:创建数据最小几何边界范围(点、线、面数据均可)

本实例为专栏系统文章:创建点数据最小几何边界(范围),配套案例数据,持续同步更新! 文章目录 一、工具介绍二、实战演练三、注意事项一、工具介绍 创建包含若干面的要素类,用以表示封闭单个输入要素或成组的输入要素指定的最小边界几何。 工具界面及参数如下所示: 核心…

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(2020)

文章目录 -Abstract1. Introductiondiss former methodour method 2. Related Work3. Compound Model Scaling3.1. 问题公式化3.2. Scaling Dimensions3.3. Compound Scaling 4. EfficientNet Architecture5. Experiments6. Discussion7. Conclusion 原文链接 源代码 - 本文中…

互联网数据传输原理 |OSI七层网络参考模型

网络模型 OSI 网络参考模型&#xff0c;仅作为参考&#xff0c;也就是说OSI网络实际中并不使用。我们只是把OSI网络模型作为参考&#xff0c;在网络出现问题的时候&#xff0c;可以从一个宏观的整体去分析和解决问题。而且搭建网络的时候也并不一定需要划分为7层 但是当今互联…

springcloud分布式事务

文章目录 一.为什么引入分布式事务?二.理论基础1.CAP定理2.BASE理论 三.Seata1.微服务集成Seata2.XA模式(掌握)3.AT模式(重点)4.TCC模式(重点)5.Saga模式(了解) 四.四种模式对比五.Seata高可用 一.为什么引入分布式事务? 事务的ACID原则 在大型的微服务项目中,每一个微服务都…

CPU的三大调度

计算机系统中的调度可以分为不同层次&#xff0c;包括作业调度、内存调度和进程调度。这三种调度分别负责管理和优化计算机系统中不同层次的资源分配和执行顺序。 高级调度&#xff1a;作业调度&#xff08;Job Scheduling&#xff09;&#xff1a; 作业调度是指对提交到计算…

ubuntu上搭建bazel编译环境,构建Android APP

背景是github上下载的工程&#xff0c;说明仅支持bazel编译&#xff0c;折腾了一天Android studio&#xff0c;失败。 不得不尝试单价bazel编译环境&#xff0c;并不复杂&#xff0c;过程记录如下 说明&#xff1a;ubuntu环境是20.04&#xff0c;pve虚拟机安装 1.安装jdk sudo…

坚鹏:广发银行梅州分行银行数字化转型战略、方法与案例培训

广发银行成立于1988年&#xff0c;前身为广东发展银行&#xff0c;经国务院和中国人民银行批准&#xff0c;是国内首批组建的全国性股份制商业银行之一&#xff0c;2016年8月&#xff0c;广发银行成为中国人寿团成员单位&#xff0c;2021年成为首批国内系统重要性银行。2022年&…