【黑马甄选离线数仓day09_会员主题域开发_DWD和DWM层】

拉链表流程

1.从ODS层获取增量数据(上一天新增和更新的数据)
2.拿着DWD原始拉链表数据 left join 增量数据 ,修改原始拉链中历史数据的结束时间
3.拿着left join 的结果集 union all 增量数据
4.把最新的拉链数据优先保存到DWD对应的临时表中
5.使用insert+select 方式把临时表中数据灌入DWD拉链表中

拉链表实现流程:

DWD层开发

DWD层: 数仓明细层(清洗转换、降维操作) 此层核心目标: 基于数据探查情况, 对相关表数据进行合并

会员基础信息表:

  • 需要对此表进行历史数据拉链

    说明: 将每日会员基础信息表中新增及更新的数据, 通过拉链的方式记录下来

建表操作:

CREATE TABLE IF NOT EXISTS dwd.dwd_mem_member_union_i(
    zt_id                    BIGINT COMMENT '中台会员ID',
    member_id                BIGINT COMMENT '会员ID',
    user_id                  BIGINT COMMENT '用户ID',
    card_no                  STRING COMMENT '卡号',
    member_name              STRING COMMENT '会员名称',
    mobile                   STRING COMMENT '手机号',
    user_email               STRING COMMENT '邮箱',
    sex                      BIGINT COMMENT '用户的性别,1男性,2女性,0未知',
    birthday_date            STRING COMMENT '生日',
    address                  STRING COMMENT '地址',
    reg_time                 TIMESTAMP COMMENT '注册时间',
    reg_md                   STRING COMMENT '注册门店',
    bind_md                  STRING COMMENT '绑定门店',
    flag                     BIGINT COMMENT '0正常,1删除',
    is_black                 BIGINT COMMENT '是否被拉黑 1被拉黑,0正常用户',
    user_state               BIGINT COMMENT '会员状态,0停用/注销,1正常,2冻结',
    user_type                STRING COMMENT '用户类型(-1:传智鲜用户;0:普通用户;1:企业用户 2:内部员工 3:黑马门店 4:商铺会员 5:大买家 6:中间商 7:军区员工)',
    member_type              BIGINT COMMENT '会员状态 10:未付费会员 20:付费会员',
    member_status            BIGINT COMMENT '付费会员状态 -1:未付费会员 1:正常 2:试用 3:过期 4:试用已过期',
    expired_time             TIMESTAMP COMMENT '过期时间',
    user_source              BIGINT COMMENT '用户来源 ',
    member_level             BIGINT COMMENT '会员等级',
    growth                   BIGINT COMMENT '成长值',
    invite_member_id         BIGINT COMMENT '邀请人标识',
    invite_type              BIGINT COMMENT '邀请类型,0为内部',
    register_store_leader_id BIGINT COMMENT '注册归属团长 ID',
    last_update_time         TIMESTAMP COMMENT '更新日期',
    end_date                 STRING COMMENT '生效结束日期'
)
comment '会员基础信息表'
partitioned by (start_date STRING COMMENT '生效开始日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');

需要对此表进行历史数据拉链

说明: 将每日会员基础信息表中新增及更新的数据, 通过拉链的方式记录下来

首次导入

-- 会员基础信息表首次导入:
insert overwrite table dwd.dwd_mem_member_union_i partition (start_date)
select
    zt_id,
    member_id,
    user_id,
    card_no,
    member_name,
    mobile,
    user_email,
    sex,
    birthday_date,
    address,
    reg_time,
    reg_md,
    bind_md,
    flag,
    is_black,
    user_state,
    user_type,
    member_type,
    member_status,
    expired_time,
    user_source,
    member_level,
    growth,
    invite_member_id,
    invite_type,
    register_store_leader_id,
    last_update_time,
    '9999-99-99' as end_date,
    '2023-11-29' as start_date
​
from ods.ods_mem_member_union_i;

后续导入

1.mysql业务数据变化

注意: 实际开发没有自己准备业务数据这一步!!!

-- 步骤一: 在MySQL中, 添加增量的测试数据, 包含 新增 和 更新的数据 (测试)
-- 模拟新增数据
insert into member.member_union (zt_id, member_id, user_id, card_no, member_name, mobile, user_email, sex, birthday_date, address,reg_time, reg_md, bind_md, flag, is_black, user_state, user_type, member_type, member_status, expired_time, user_source, member_level, growth, invite_member_id, invite_type, register_store_leader_id,last_update_time)
values ('32015926',2160344,NULL,'','32015925',114,163,0,'','不详','2023-11-30 17:09:28','W121','W121',0,0,1,-1,10,-1,NULL,-1,0,0,NULL,NULL,NULL,'2023-11-30 17:09:28');
-- 模拟更新数据
UPDATE member.member_union SET SEX = 1, last_update_time = '2023-11-30 17:10:20' WHERE zt_id = '32015925';
​
-- 验证数据
select * 
from member.member_union
where date_format(reg_time,'%Y-%m-%d') = date_format(date_sub(Now(),INTERVAL 1 DAY),'%Y-%m-%d')
     OR date_format(last_update_time,'%Y-%m-%d') = date_format(date_sub(Now(),INTERVAL 1 DAY),'%Y-%m-%d')

2.datax-web导数据到ods

-- 步骤二: 执行DataX, 将新增数据和增量数据导入到ODS层  (应该在数据采集中执行)
-- 说明: 此步骤详细过程参考day02实施
-- 注意: mysqlreader中记得补充条件
date_format(reg_time,'%Y-%m-%d') = date_format(date_sub(Now(),INTERVAL 1 DAY),'%Y-%m-%d')
OR date_format(last_update_time,'%Y-%m-%d') = date_format(date_sub(Now(),INTERVAL 1 DAY),'%Y-%m-%d')
​
-- 注意: hdfswriter中记得补一个后置sql语句,内容如下
"postSql":[
    "msck repair table ods.ods_mem_member_union_i"
],

3.hive增量导数据到dwd

-- 步骤三: 执行增量数据导入
​
-- 先创建一张目标表的临时表, 用于放置计算后的结果
CREATE TABLE IF NOT EXISTS dwd.dwd_mem_member_union_i_temp(
    zt_id                    BIGINT COMMENT '中台会员ID',
    member_id                BIGINT COMMENT '会员ID',
    user_id                  BIGINT COMMENT '用户ID',
    card_no                  STRING COMMENT '卡号',
    member_name              STRING COMMENT '会员名称',
    mobile                   STRING COMMENT '手机号',
    user_email               STRING COMMENT '邮箱',
    sex                      BIGINT COMMENT '用户的性别,1男性,2女性,0未知',
    birthday_date            STRING COMMENT '生日',
    address                  STRING COMMENT '地址',
    reg_time                 TIMESTAMP COMMENT '注册时间',
    reg_md                   STRING COMMENT '注册门店',
    bind_md                  STRING COMMENT '绑定门店',
    flag                     BIGINT COMMENT '0正常,1删除',
    is_black                 BIGINT COMMENT '是否被拉黑 1被拉黑,0正常用户',
    user_state               BIGINT COMMENT '会员状态,0停用/注销,1正常,2冻结',
    user_type                STRING COMMENT '用户类型(-1:传智鲜用户;0:普通用户;1:企业用户 2:内部员工 3:黑马门店 4:商铺会员 5:大买家 6:中间商 7:军区员工)',
    member_type              BIGINT COMMENT '会员状态 10:未付费会员 20:付费会员',
    member_status            BIGINT COMMENT '付费会员状态 -1:未付费会员 1:正常 2:试用 3:过期 4:试用已过期',
    expired_time             TIMESTAMP COMMENT '过期时间',
    user_source              BIGINT COMMENT '用户来源 ',
    member_level             BIGINT COMMENT '会员等级',
    growth                   BIGINT COMMENT '成长值',
    invite_member_id         BIGINT COMMENT '邀请人标识',
    invite_type              BIGINT COMMENT '邀请类型,0为内部',
    register_store_leader_id BIGINT COMMENT '注册归属团长 ID',
    last_update_time         TIMESTAMP COMMENT '更新日期',
    end_date                 STRING COMMENT '生效结束日期'
)
comment '会员基础信息表'
partitioned by (start_date STRING COMMENT '生效开始日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');
​
​
-- 循环导入数据
with t2 as (
    select
        t1.zt_id,
        t1.member_id,
        t1.user_id,
        t1.card_no,
        t1.member_name,
        t1.mobile,
        t1.user_email,
        t1.sex,
        t1.birthday_date,
        t1.address,
        t1.reg_time,
        t1.reg_md,
        t1.bind_md,
        t1.flag,
        t1.is_black,
        t1.user_state,
        t1.user_type,
        t1.member_type,
        t1.member_status,
        t1.expired_time,
        t1.user_source,
        t1.member_level,
        t1.growth,
        t1.invite_member_id,
        t1.invite_type,
        t1.register_store_leader_id,
        t1.last_update_time,
        if(
            t2.zt_id is null OR t1.end_date != '9999-99-99',
            t1.end_date,
            t2.dt
        ) as end_date,
        t1.start_date
    from dwd.dwd_mem_member_union_i t1 
        left join (select * from ods.ods_mem_member_union_i 
               where dt =   date_format(date_sub(current_date(),1),'yyyy-MM-dd')
         ) as t2 on t1.zt_id = t2.zt_id
    
    union all
    
    select
        zt_id,
        member_id,
        user_id,
        card_no,
        member_name,
        mobile,
        user_email,
        sex,
        birthday_date,
        address,
        reg_time,
        reg_md,
        bind_md,
        flag,
        is_black,
        user_state,
        user_type,
        member_type,
        member_status,
        expired_time,
        user_source,
        member_level,
        growth,
        invite_member_id,
        invite_type,
        register_store_leader_id,
        last_update_time,
        '9999-99-99' as end_date,
        date_format(date_sub(current_date(),1),'yyyy-MM-dd') as start_date
    from ods.ods_mem_member_union_i
    where dt = date_format(date_sub(current_date(),1),'yyyy-MM-dd')
)
insert overwrite table dwd.dwd_mem_member_union_i_temp partition (start_date)
select
*
from t2 ;
​
-- 将临时表数据覆盖回目标表中
insert overwrite table dwd.dwd_mem_member_union_i partition (start_date)
select * from dwd.dwd_mem_member_union_i_temp;
​
-- 将临时表删除
drop table dwd.dwd_mem_member_union_i_temp;

情况说明:

    1- 目前所做的拉链表是针对历史所有数据, 哪怕这个数据是五年前创建后, 然后五年后发生修改, 我们依然会进行维护
    
    2- 目前所有的拉链表是针对表中所有的字段, 只要表中任何字段发生变更, 都会进行维护
    
​
但是:
    在实际开发中,我们一般不需要维护历史所有数据, 也不需要维护表中所有的字段
    
    一般维护最近一段周期的数据(一个月、一个季度、一年(最常用))
    
    一般维护的核心与后续指标计算相关的字段: 用哪些一般维护哪些

会员积分变动表:

  • 用于记录每个会员每天积分的变动情况(需统计)

建表操作:

因为占用主体ID,分为两部分,一部分occupy_subject_id 为0,即全部,另一部分是各种主体,所以这里计算时,分为两部分计算,然后将结果进行合并。

CREATE TABLE IF NOT EXISTS dwd.dwd_mem_member_point_change_i(
    trade_date          STRING COMMENT '快照时间',
    zt_id            BIGINT COMMENT '中台ID',
    occupy_subject_id   BIGINT COMMENT '占用主体ID,0为全部,101优选,102传智鲜,103传智商城',
    point_add           BIGINT COMMENT '增加积分,没有则为0',
    point_reduce        BIGINT COMMENT '减少积分,没有则为0',
    point_change        BIGINT COMMENT '变动积分,没有则为0'
) 
comment '会员积分变动表'
partitioned by (dt STRING COMMENT '统计日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');

数据导入:

-- 会员主题 DWD层开发  会员积分变动表
-- 需求: 统计每天各个会员积分变动情况
-- 注意: 主体分为两部分 , 一部分是全部  一部分为各个主体
insert overwrite table dwd.dwd_mem_member_point_change_i partition(dt)
select
    dt as trade_date,
    zt_id,
    occupy_subject_id,
    sum( if( change_type = 1,point_c,0) ) as point_add,
    sum( if( change_type = 0,-point_c,0) ) as point_reduce,
    sum(if( change_type = 1,point_c,-point_c)) as point_change,
    dt
from ods.ods_mem_user_point_log_detailed_i
group by
    dt,
    zt_id,
    occupy_subject_id
    
union  all
​
select
    dt as trade_date,
    zt_id,
    0 as occupy_subject_id,
    sum( if( change_type = 1,point_c,0) ) as point_add,
    sum( if( change_type = 0,-point_c,0) ) as point_reduce,
    sum(if( change_type = 1,point_c,-point_c)) as point_change,
    dt
from ods.ods_mem_user_point_log_detailed_i
group by
    dt,
    zt_id;

线上会员每日余额变动表:

用于记录每个会员每天余额的变动情况(需统计)

建表操作:

CREATE TABLE IF NOT EXISTS dwd.dwd_mem_balance_change_i(
    trade_date      STRING COMMENT '统计日期',
    zt_id           BIGINT COMMENT '中台ID',
    member_id       BIGINT COMMENT '会员ID',
    record_type     BIGINT COMMENT '记录类型,0全部,1消费,2充值,3退款,4.清退余额,5.转化,6.系统清除,7.礼品卡兑换,8.现付结余,9.结余退款,10.退卡',
    times           BIGINT COMMENT '次数',
    change_amount   DECIMAL(27, 2) COMMENT '变动金额'
) 
comment '线上会员每日余额变动表'
partitioned by (dt STRING COMMENT '统计日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');

数据导入:

-- DWD 会员余额变动表
-- 需求: 统计每天各个会员余额变动情况
-- 注意:  记录类型也分为二部分  一个是全部  一个是 各个记录类型  union all 将两部分结果进行合并
insert overwrite table dwd.dwd_mem_balance_change_i partition (dt)
select
    dt as trade_date,
    zt_id,
    member_id,
    record_type,

    count(1) as times,
    sum(amount) as change_amount,
    dt
from ods.ods_mem_store_amount_record_i
group by
    dt,
    zt_id,
    member_id,
    record_type
    
union all

select
    dt as trade_date,
    zt_id,
    member_id,
    0 as record_type,

    count(1) as times,
    sum(amount) as change_amount,
    dt
from ods.ods_mem_store_amount_record_i
group by
    dt,
    zt_id,
    member_id;

线上会员每日余额表:

用于记录每个会员每天余额的情况(需统计)

建表操作:

CREATE TABLE IF NOT EXISTS dwd.dwd_mem_balance_online_i(
    trade_date          STRING COMMENT '统计日期',
    zt_id               BIGINT COMMENT '中台ID',
    member_id           BIGINT COMMENT '会员ID',    
    member_type         BIGINT COMMENT '会员类型 1:线下会员 2:线上会员',
    member_type_name    STRING COMMENT '会员类型名称',
    store_no            STRING COMMENT '门店编码',
    city_id             BIGINT COMMENT '城市ID',
    balance_amount      DECIMAL(27, 2) COMMENT '余额'
) 
comment '线上会员每日余额表'
partitioned by (dt STRING COMMENT '统计日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');

需求分析:

这个需求是将变动日志进行处理,基于日志明细构建余额快照表。

先取到每天最后一条,

select 
	date_format(trade_date,'yyyy-MM-dd') as trade_date,
	max(id) as id
from ods.ods_mem_store_amount_record_i
group by date_format(trade_date,'yyyy-MM-dd'),member_id 

然后使用 lead 函数按用户id进行分组,按日期进行排序,取到下一条对应的日期。

select
        trade_date,zt_id,member_id,store_no,city_id,left_store_amount,
        lead(trade_date,1,'9999-12-31') over(partition by member_id order by trade_date) as next_date
    from
        (select a.trade_date,b.zt_id,b.member_id,b.store_no,b.city_id,b.left_store_amount
        from
            (select date_format(trade_date,'yyyy-MM-dd') as trade_date,
                    max(id) as id
            from ods.ods_mem_store_amount_record_i
            group by date_format(trade_date,'yyyy-MM-dd'),member_id ) a
            inner join ods.ods_mem_store_amount_record_i b on a.id=b.id
        ) t

然后像使用拉链表一样用'${inputdate}'去卡日期,即可取到当天对应的余额。

注意: 因为这个需求只是把有余额的记录记录到表中,所以需要去除掉 left_store_amount 为0 的情况。在这里把 left_store_amount<>0 写到了where条件中,是先对结果进行了过滤,这样在匹配时就匹配不到对应的数据了,也就是不会把对应的记录插入到表中了。

where trade_date<='${inputdate}'  and  '${inputdate}'<next_date and left_store_amount<>0

-- 思考: 如何拿到最后一次余额变动数据呢?
-- 尝试先找到每天 每个用户 ID最大值
select
    dt,
    zt_id,
    max(id) as last_id
from ods.ods_mem_store_amount_record_i
group by dt,zt_id;

数据导入:

-- DWD 线上会员每日余额表
-- 说明: 此表是用于记录每个会员每天(某一天)会员余额是多少
-- 先找到最大id
-- 基于最大的ID, 找到对应的余额数据
-- 目前写的这条SQL 其实已经拿到了每天每个用户的余额,但是这个数据是来源于用户余额变动表, 如果用户在某一天没有变化, 在这一天就不会有这个用户余额
with t1 as (
    select
        dt as trade_date,
        zt_id,
        max(id) as last_id
    from ods.ods_mem_store_amount_record_i
    group by dt,zt_id
),
t2 as(
    select
        t1.trade_date as start_date,
        t1.zt_id,
        t2.member_id,
        t2.store_no,
        t2.city_id,
        t2.left_store_amount,
        lead(t1.trade_date,1,'9999-99-99') over(partition by t1.zt_id order by t1.trade_date) as end_date
    from t1 inner join ods.ods_mem_store_amount_record_i t2 on t1.last_id = t2.id
)
insert overwrite table dwd.dwd_mem_balance_online_i partition (dt)
select
    start_date as trade_date,
    zt_id,
    member_id,
    2 as member_type,
    '线上会员' as member_type_name,
    store_no,
    city_id,
    left_store_amount as balance_amount,
    '2023-12-01' as dt
from t2 where start_date <= '2023-12-01' and end_date > '2023-12-01' and left_store_amount <> 0;

DWM层开发

各类会员数量统计:
指标:新增注册会员数、累计注册会员数、新增消费会员数、累计消费会员数、新增复购会员数、累计复购会员数、活跃会员数、沉睡会员数、会员消费金额
维度: 时间维度(天、周、月)
​
门店会员分析:
指标: 门店销售额、门店总订单量、当日注册人数、累计注册会员数、当日注册且充值会员数、当日注册且充值且消费会员数、当日注册且消费会员数、充值会员数、充值金额、累计会员充值金额、当日有余额的会员人数、当日会员余额、余额消费人数/单量、余额支付金额、余额消费金额、会员消费人数/单量、会员消费金额、会员首单人数/订单量/销售额、会员非首单人数/订单量/销售额
维度: 时间维度(天、周、月)
​
说明:
由于各类会员数据统计分析和门店会员分析中, 有大量的指标存在一定的依赖关系, 所以在此处我们合并在一起进行分析, 向上抽取出一些公共的DWM层的数据表, 便于后续两个DWS层表数据的聚合统计, 本次主要涉及有四张DWM层表:会员销售订单表、会员首次消费表、会员第二次消费表、会员行为天表

会员销售订单表

建表操作:

CREATE TABLE IF NOT EXISTS dwm.dwm_mem_sell_order_i(
    create_time                 STRING COMMENT '订单创建时间',
    trade_date                  STRING COMMENT '交易日期',
    week_trade_date             STRING COMMENT '周一日期',
    month_trade_date            STRING COMMENT '月一日期',
    hourly                      BIGINT COMMENT '交易小时(0-23)',
    quarter                     BIGINT COMMENT '刻钟:1.0-15,2.15-30,3.30-45,4.45-60',
    quarters                    BIGINT COMMENT '刻钟数:hourly*4+quarters',
​
    parent_order_no             STRING COMMENT '父单订单号/源单号',
    order_no                    STRING COMMENT '订单编号',
    trade_type                  BIGINT COMMENT '结算类型(0.正常交易,1.赠品发放,2.退货,4.培训,5.取消交易)',
    source_type                 BIGINT COMMENT '交易来源1:线下POS;2:三方平台;3:传智鲜商城;4:黑马优选团;5:传智大客户;6:传智其他;7:黑马优选;8:优选海淘;9:优选大客户;10:优选POS;11:优选APP;12:优选H5;13:店长工具线下;14:店长工具线上;15:黑马其他',
    source_type_name            STRING COMMENT '交易来源名称',
    sale_type                   BIGINT COMMENT '销售类型 1.实物,2.代客,3.优选小程序,4.离店,5.传智鲜小程序,6.第三方平台,7.其他,8.大客户',
    is_online_order             BIGINT COMMENT '是否为线上单:0否,1是',
    member_type                 BIGINT COMMENT '会员类型:0非会员,1线上会员,2实体卡会员',
    is_balance_consume          BIGINT COMMENT '是否有余额支付:0否,1是',
    order_type                  BIGINT COMMENT '配送类型(真正的订单类型由业务类型来决定):1-及时送;2-隔日送;3-自提单;4-线下单',
    express_type                BIGINT COMMENT '配送方式:0-三方平台配送;1-自配送;2-快递;3-自提;4-线下',
​
    store_no                    STRING COMMENT '店铺编码',
    store_name                  STRING COMMENT '店铺名称',
    store_sale_type             BIGINT COMMENT '店铺销售类型',
    store_type_code             BIGINT COMMENT '分店类型',
    worker_num                  BIGINT COMMENT '员工人数',
    store_area                  DECIMAL(27, 2) COMMENT '门店面积',
    city_id                     BIGINT COMMENT '城市ID',
    city_name                   STRING COMMENT '城市名称',
    region_code                 STRING COMMENT '区域编码',
    region_name                 STRING COMMENT '区域名称',
    is_day_clear                BIGINT COMMENT '是否日清:0否,1是',
​
    is_cancel                   BIGINT COMMENT '是否取消',
    cancel_time                 STRING COMMENT '取消时间',
    cancel_reason               STRING COMMENT '取消原因',
    last_update_time            TIMESTAMP COMMENT '最新更新时间',
    
    cashier_no                  STRING COMMENT '收银员编码',
    cashier_name                STRING COMMENT '收银员名称',
​
    zt_id                       BIGINT COMMENT '中台ID',
    member_id                   BIGINT COMMENT '会员ID',
    card_no                     STRING COMMENT '卡号',
    r_name                      STRING COMMENT '收货人姓名',
    r_province                  STRING COMMENT '收货人省份',
    r_city                      STRING COMMENT '收货人城市',
    r_district                  STRING COMMENT '收货人区域',
​
    is_tuan_head                BIGINT COMMENT '是否为团长订单',
    store_leader_id             BIGINT COMMENT '团长id',
    order_group_no              STRING COMMENT '团单号',
​
    settle_amount               DECIMAL(27, 2) COMMENT '结算金额',
    share_user_id               BIGINT COMMENT '分享人用户ID',
    commission_amount           DECIMAL(27, 2) COMMENT '佣金',
​
    order_total_amount          DECIMAL(27, 2) COMMENT '订单总金额',
    product_total_amount        DECIMAL(27, 2) COMMENT '商品总金额(原价)',
    pack_amount                 DECIMAL(27, 2) COMMENT '餐盒费/打包费',
    delivery_amount             DECIMAL(27, 2) COMMENT '配送费',
    discount_amount             DECIMAL(27, 2) COMMENT '订单优惠金额=商家承担优惠金额+平台补贴金额',
    seller_discount_amount      DECIMAL(27, 2) COMMENT '商家承担优惠金额',
    platform_allowance_amount   DECIMAL(27, 2) COMMENT '平台补贴金额',
    real_paid_amount            DECIMAL(27, 2) COMMENT '实付金额',
    product_discount            DECIMAL(27, 2) COMMENT '商品优惠金额',
    real_product_amount         DECIMAL(27, 2) COMMENT '商品实际金额',
    
    round_amount                DECIMAL(27, 2) COMMENT '舍分金额',       
    wechat_amount               DECIMAL(27, 4) COMMENT '微信支付',
    ali_pay_amount              DECIMAL(27, 4) COMMENT '支付宝支付',
    cash_amount                 DECIMAL(27, 4) COMMENT '现金支付',
    balance_amount              DECIMAL(27, 4) COMMENT '余额支付',
    point_amount                DECIMAL(27, 4) COMMENT '积分支付',
    unionpay_amount             DECIMAL(27, 4) COMMENT '银行支付',
    member_card_amount          DECIMAL(27, 4) COMMENT '线下实体卡支付',
    gift_amount                 DECIMAL(27, 4) COMMENT '礼品卡支付',
    czapi_amount                DECIMAL(27, 4) COMMENT '传智支付',
    other_pay_amount            DECIMAL(27, 4) COMMENT '其他支付' 
)
comment '会员销售订单表'
partitioned by (dt STRING COMMENT '销售日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');
​

思路分析:

构建这张表的主要原因在于,后续的会员数据分析可以基于这张会员销售明细表来进行计算,相比全量的销售明细表,可以极大地减少数据量。

从dwm_sell_o2o_order_i表中获取,只取member_type 为1的。

准备数据:

在实际工作中, 部分表需要依赖于其他开发人员, 当天dwm_sell_o2o_order_i是属于售卖主题中的相关表

需要执行脚本目录中售卖主题准备工作脚本的<<售卖主题dwm_sell_o2o_order_i表>>

数据导入:

-- DWM层: 会员销售订单明细表
insert overwrite table dwm.dwm_mem_sell_order_i partition (dt)
select
    create_time,
    trade_date,
    week_trade_date,
    month_trade_date,
    hourly,
    quarter,
    quarters,
    parent_order_no,
    order_no,
    trade_type,
    source_type,
    source_type_name,
    sale_type,
    is_online_order,
    member_type,
    is_balance_consume,
    order_type,
    express_type,
    store_no,
    store_name,
    store_sale_type,
    store_type_code,
    worker_num,
    store_area,
    city_id,
    city_name,
    region_code,
    region_name,
    is_day_clear,
    is_cancel,
    cancel_time,
    cancel_reason,
    last_update_time,
    cashier_no,
    cashier_name,
    zt_id,
    member_id,
    card_no,
    r_name,
    r_province,
    r_city,
    r_district,
    is_tuan_head,
    store_leader_id,
    order_group_no,
    settle_amount,
    share_user_id,
    commission_amount,
    order_total_amount,
    product_total_amount,
    pack_amount,
    delivery_amount,
    discount_amount,
    seller_discount_amount,
    platform_allowance_amount,
    real_paid_amount,
    product_discount,
    real_product_amount,
    round_amount,
    wechat_amount,
    ali_pay_amount,
    cash_amount,
    balance_amount,
    point_amount,
    unionpay_amount,
    member_card_amount,
    gift_amount,
    czapi_amount,
    other_pay_amount,
    dt
from dwm.dwm_sell_o2o_order_i where member_type = 1;

会员首次消费表:

建表操作:

CREATE TABLE IF NOT EXISTS dwm.dwm_mem_first_buy_i(
    zt_id                       BIGINT COMMENT '中台 会员id',
    trade_date_time             STRING COMMENT '首次消费时间',
    trade_date                  STRING COMMENT '首次消费日期',
    week_trade_date             STRING COMMENT '周一日期',
    month_trade_date            STRING COMMENT '月一日期',
    
    store_no                    STRING COMMENT '消费门店',
    sale_amount                 DECIMAL(27, 2) COMMENT '消费金额',
    order_no                    STRING COMMENT '订单编号',
    source_type                 BIGINT COMMENT '交易来源'
) 
comment '会员首次消费表'
partitioned by (dt STRING COMMENT '消费日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');

思路分析:

注意:这里不能直接对全量数据使用over窗口,然后取 row_number() 为1的数据,因为这样会极大的消耗没有用的IO资源。

思路:通过思考发现,每日新增首次消费会员一定是当天消费中的首次会员,并且不在历史首次消费的会员中。基于这个特性,可以先算中当天消费中的首次会员,然后再和 dwm_mem_first_buy_i 关联,使用左关联,取出 dwm_mem_first_buy_i 中没有的,即关联不上的,则是首次消费会员,然后存到对应分区即可。

数据导入:

-- DWM 会员首次消费表 dwm_mem_first_buy_i
--  第一步: 计算出当天首次消费的用户   (此用户并不代表历史首次消费)
with t1 as (
    select
        zt_id,
        create_time as trade_date_time,
        trade_date,
        week_trade_date,
        month_trade_date,
        store_no,
        real_paid_amount as sale_amount,
        order_no,
        source_type,
        row_number() over (partition by zt_id order by create_time) as rn
    from dwm.dwm_mem_sell_order_i where dt = '2023-11-14' and zt_id is not null
),
t2 as(
    select
        zt_id,
        trade_date_time,
        trade_date,
        week_trade_date,
        month_trade_date,
        store_no,
        sale_amount,
        order_no,
        source_type
    from t1 where rn = 1
)
-- 第二步: 用第一步的结果 和 截止当天之前的历史首次消费表进行关联 (left Join)
insert overwrite table dwm.dwm_mem_first_buy_i partition (dt)
select
    t2.zt_id,
    t2.trade_date_time,
    t2.trade_date,
    t2.week_trade_date,
    t2.month_trade_date,
    t2.store_no,
    t2.sale_amount,
    t2.order_no,
    t2.source_type,
    '2023-11-14' as dt
from t2 left join dwm.dwm_mem_first_buy_i t3 on t2.zt_id = t3.zt_id and t3.dt < '2023-11-14'
-- 第三步: 判断: 如果 没有关联上, 说明在历史首次消费中并未发现有消费, 我们就认为当天的消费就是历史首次
where t3.zt_id is null;
​
-- 注意:运行完后可以依次修改时间把dwm_mem_sell_order_i所有分区数据都导入
-- 说明: 在实施中 大家需要调整日期, 依次将14~20号的数据跑出来即可

会员第二次消费表:

建表操作:

CREATE TABLE IF NOT EXISTS dwm.dwm_mem_second_buy_i(
    zt_id                       BIGINT COMMENT '中台 会员id',
    trade_date_time             STRING COMMENT '第二次消费时间',
    trade_date                  STRING COMMENT '第二次消费日期',
    week_trade_date             STRING COMMENT '周一日期',
    month_trade_date            STRING COMMENT '月一日期',
​
    store_no                    STRING COMMENT '消费门店',
    sale_amount                 DECIMAL(27, 2) COMMENT '消费金额',
    order_no                    STRING COMMENT '订单编号',
    source_type                 BIGINT COMMENT '交易来源'
)
comment '会员第二次消费表'
partitioned by (dt STRING COMMENT '消费日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');

思路分析:

注意:同dwm_mem_first_buy_i不能直接对全量数据使用over窗口,然后取 row_number() 为2的数据。

思路:这种用户分为两种,一种是历史上有过首次购买的但没有二次购买的,这种用户如果当日有首次购买,则为第二次购买。另一种是历史上从没有购买过,这种用户如果当天首次购买,并且发生第二次购买则是第二次购买。

第一种会员:先求出有过首次购买但没有二次购买的会员

select f.zt_id
from dwm.dwm_mem_first_buy_i f
    left join dwm.dwm_mem_second_buy_i s on f.zt_id=s.zt_id and s.dt < '${inputdate}'
where f.dt < '${inputdate}' and s.zt_id is null

然后和当天首次消费的会员进行关联。

第二种:先求出当天购买两次的会员。

select
    *
from
    (select
        zt_id,
        create_time as trade_date_time,
        trade_date,
        week_trade_date,
        month_trade_date,
        store_no,
        real_paid_amount as sale_amount,
        order_no,
        source_type,
        row_number() over(partition by zt_id order by create_time) as rn
    from dwm.dwm_mem_sell_order_i
    where dt = '${inputdate}' ) t
where t.rn=2

然后和当天是首单的会员进行关联:

inner join dwm.dwm_mem_first_buy_i tmp
on t.zt_id=tmp.zt_id and tmp.dt = '${inputdate}'

数据导入:

-- DWM层:  会员二次消费表
--思路: 统计日期: 2023-11-14
-- 情况一: 历史上有过首次购买, 但没有二次购买  和 今日的首次购买用户进行 关联 得出二次购买用户
with t3 as (
    -- 步骤一: 得到史上有过首次购买, 但没有二次购买用户有哪些
    select
        t1.zt_id,
        t1.trade_date_time,
        t1.trade_date,
        t1.week_trade_date,
        t1.month_trade_date,
        t1.store_no,
        t1.sale_amount,
        t1.order_no,
        t1.source_type
    from (select * from dwm.dwm_mem_first_buy_i where dt < '2023-11-14') t1 -- 历史所有的首次购买
        left join dwm.dwm_mem_second_buy_i t2 on t1.zt_id = t2.zt_id and t2.dt < '2023-11-14' -- 历史所有的二次购买用户
    where t2.zt_id is null  -- 判断 如果关联不上, 那就表示有过历史首次购买, 但没有二次购买用户
),
-- 步骤二: 基于这个结果 和 今日首次购买的用户进行关联
t5 as (  -- 历史上有过首次购买 但没有二次购买和当日首次购买用户结果 (情况一结果表)
    select
        t3.zt_id,
        t3.trade_date_time,
        t3.trade_date,
        t3.week_trade_date,
        t3.month_trade_date,
        t3.store_no,
        t3.sale_amount,
        t3.order_no,
        t3.source_type
    from t3
        inner join
            (
                select
                    zt_id,
                    create_time as trade_date_time,
                    trade_date,
                    week_trade_date,
                    month_trade_date,
                    store_no,
                    real_paid_amount as sale_amount,
                    order_no,
                    source_type,
                    row_number() over (partition by zt_id order by create_time) as rn
                from dwm.dwm_mem_sell_order_i  where dt = '2023-11-14'
            ) t4
        on t3.zt_id = t4.zt_id and t4.rn = 1
),
​
​
​
​
-- 情况二: 历史上从没有购买过, 但是当天发生了多次购买, 获取其中第二次购买即可
t6 as (
    select
        zt_id,
        create_time as trade_date_time,
        trade_date,
        week_trade_date,
        month_trade_date,
        store_no,
        real_paid_amount as sale_amount,
        order_no,
        source_type,
        row_number() over (partition by zt_id order by create_time) as rn
    from dwm.dwm_mem_sell_order_i  where dt = '2023-11-14'
),
t7 as (
    select
        zt_id,
        trade_date_time,
        trade_date,
        week_trade_date,
        month_trade_date,
        store_no,
        sale_amount,
        order_no,
        source_type
    from t6 where rn = 2
),
-- 历史上没有购买过, 但是当天发生了二次购买的用户(情况二结果表)
t9 as (
    select
        t7.zt_id,
        t7.trade_date_time,
        t7.trade_date,
        t7.week_trade_date,
        t7.month_trade_date,
        t7.store_no,
        t7.sale_amount,
        t7.order_no,
        t7.source_type
    from t7 inner join dwm.dwm_mem_first_buy_i t8 on t7.zt_id = t8.zt_id and t8.dt = '2023-11-14'
)
insert overwrite table dwm.dwm_mem_second_buy_i partition (dt)
select
    zt_id,
    trade_date_time,
    trade_date,
    week_trade_date,
    month_trade_date,
    store_no,
    sale_amount,
    order_no,
    source_type,
    '2023-11-14' as dt
from t5 where zt_id is not null
​
union all
​
select
    zt_id,
    trade_date_time,
    trade_date,
    week_trade_date,
    month_trade_date,
    store_no,
    sale_amount,
    order_no,
    source_type,
    '2023-11-14' as dt
from t9 where zt_id is not null
​
​
-- 说明: 在实施中 大家需要调整日期, 依次将14~20号的数据跑出来即可
/*  在生产环境中(工作中), 我们可以通过海豚调度器提供的补数方案, 指定需要补数的范围, 调度器会自动将过去的几天数据全部补回来(无需执行, 了解即可, 面试中按照这个说即可)*/

会员行为天表

建表操作:

CREATE TABLE IF NOT EXISTS dwm.dwm_mem_member_behavior_day_i(
    trade_date              STRING COMMENT '时间',
    week_trade_date         STRING COMMENT '周一日期',
    month_trade_date        STRING COMMENT '月一日期',
    
    zt_id                   BIGINT COMMENT '中台 会员id',
    bind_md                 STRING COMMENT '归属门店(绑定门店)',
    reg_md                  STRING COMMENT '注册门店',
    reg_time                TIMESTAMP COMMENT '中台 注册时间',
    is_register             BIGINT COMMENT '当日是否注册',
    is_recharge             BIGINT COMMENT '当日是否充值',
    recharge_times          BIGINT COMMENT '充值次数,没有充值则为0',
    recharge_amount         DECIMAL(27, 2) COMMENT '充值金额,没有充值则为0',
    is_consume              BIGINT COMMENT '当日是否消费',
    consume_times           BIGINT COMMENT '消费次数,没有消费则为0',
    consume_amount          DECIMAL(27, 2) COMMENT '消费金额,没有消费则为0',
    is_first_consume        BIGINT COMMENT '当日是否首次消费',
    first_consume_store     STRING COMMENT '首次消费门店,没有则为null',
    first_consume_amount    DECIMAL(27, 2) COMMENT '首次消费金额,没有消费则为0',
    is_balance_consume      BIGINT COMMENT '当日是否余额消费',
    balance_consume_times   BIGINT COMMENT '余额消费次数,没有消费则为0',
    balance_pay_amount      DECIMAL(27, 2) COMMENT '余额支付金额,没有消费则为0',
    balance_consume_amount  DECIMAL(27, 2) COMMENT '余额消费金额,没有消费则为0',
    is_point_consume        BIGINT COMMENT '当日是否积分消费',
    point_consume_times     BIGINT COMMENT '积分消费次数,没有消费则为0',
    point_pay_amount        DECIMAL(27, 2) COMMENT '积分支付金额,没有消费则为0',
    point_consume_amount    DECIMAL(27, 2) COMMENT '积分消费金额,没有消费则为0',
    point_add               BIGINT COMMENT '增加积分,没有则为0',
    point_reduce            BIGINT COMMENT '减少积分,没有则为0',
    point_change            BIGINT COMMENT '变动积分,没有则为0',
    online_consume_times    BIGINT COMMENT '线上订单量',
    online_consume_amount   DECIMAL(27, 2) COMMENT '线上消费金额',
    offline_consume_times   BIGINT COMMENT '线下订单量',
    offline_consume_amount  DECIMAL(27, 2) COMMENT '线下消费金额'
) 
comment '会员行为天表'
partitioned by (dt STRING COMMENT '统计日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');

思路分析:

从dwd.dwd_mem_member_union_i中获取注册信息,

dwd.dwd_mem_balance_change_i中获取充值信息,

dwm.dwm_mem_sell_order_i中获取销售信息,

dwm.dwm_mem_first_buy_i中获取首次消费信息,

dwd.dwd_mem_member_point_change_i中获取积分信息。

数据导入:

-- DWM: 会员行为数据表
​
with t1 as (
    -- 注册信息数据
    select
        '2023-11-14' as trade_date,
        zt_id,
        if(
            date_format(reg_time,'yyyy-MM-dd') =  '2023-11-14',1,0
        ) as is_register,
        0 as is_recharge,
        0 as recharge_times,
        0 as recharge_amount,
        0 as is_consume,
        0 as consume_times,
        0 as consume_amount,
        0 as is_first_consume,
        '' as first_consume_store,
        0 as first_consume_amount,
        0 as is_balance_consume,
        0 as balance_consume_times,
        0 as balance_pay_amount,
        0 as balance_consume_amount,
        0 as is_point_consume,
        0 as point_consume_times,
        0 as point_pay_amount,
        0 as point_consume_amount,
        0 as point_add,
        0 as point_reduce,
        0 as point_change,
        0 as online_consume_times,
        0 as online_consume_amount,
        0 as offline_consume_times,
        0 as offline_consume_amount
    from dwd.dwd_mem_member_union_i
    -- 第一次导入:  start_date 更改为 <=  但是第二次及其后续, 直接用 = 获取当天的日期注册数据
    where date_format(reg_time,'yyyy-MM-dd') <= '2023-11-14' and end_date = '9999-99-99'
    union all
    -- 充值数据
    select
        trade_date,
        zt_id,
        0 as is_register,
        1 as is_recharge,
        times as recharge_times,
        change_amount as recharge_amount,
        0 as is_consume,
        0 as consume_times,
        0 as consume_amount,
        0 as is_first_consume,
        '' as first_consume_store,
        0 as first_consume_amount,
        0 as is_balance_consume,
        0 as balance_consume_times,
        0 as balance_pay_amount,
        0 as balance_consume_amount,
        0 as is_point_consume,
        0 as point_consume_times,
        0 as point_pay_amount,
        0 as point_consume_amount,
        0 as point_add,
        0 as point_reduce,
        0 as point_change,
        0 as online_consume_times,
        0 as online_consume_amount,
        0 as offline_consume_times,
        0 as offline_consume_amount
    from dwd.dwd_mem_balance_change_i
    where dt ='2023-11-14' and record_type = 2
    union all
    -- 消费情况
    select
        trade_date,
        zt_id,
​
        0 as is_register,
​
        0 as is_recharge,
        0 as recharge_times,
        0 as recharge_amount,
​
        1 as is_consume,
        count( distinct  if(trade_type = 0,parent_order_no,NULL)) - count( distinct  if(trade_type = 5,parent_order_no,NULL)) as consume_times,
        sum(real_paid_amount) as consume_amount,
​
        0 as is_first_consume,
        '' as first_consume_store,
        0 as first_consume_amount,
​
        max(is_balance_consume) as is_balance_consume,
        count( distinct  if(trade_type = 0 and is_balance_consume = 1,parent_order_no,NULL)) - count( distinct  if(trade_type = 5 and is_balance_consume = 1,parent_order_no,NULL)) as balance_consume_times,
        sum(
           if(is_balance_consume = 1,balance_amount,0)
        ) as balance_pay_amount,
        sum(
           if(is_balance_consume = 1,real_paid_amount,0)
        ) as balance_consume_amount,
        max(
            if(point_amount > 0,1,0)
        ) as is_point_consume,
        count( DISTINCT if(trade_type = 0 and point_amount > 0,parent_order_no,NULL) ) - count( DISTINCT if(trade_type = 5 and point_amount > 0,parent_order_no,NULL) ) as point_consume_times,
        sum(
           if(point_amount > 0,point_amount,0)
        ) as point_pay_amount,
        sum(
           if(point_amount > 0,real_paid_amount,0)
        ) as point_consume_amount,
        0 as point_add,
        0 as point_reduce,
        0 as point_change,
​
        count( DISTINCT  if(trade_type = 0 and is_online_order = 1,parent_order_no,NULL) ) - count( DISTINCT  if(trade_type = 5 and is_online_order = 1,parent_order_no,NULL) )  as online_consume_times,
        sum(
            if(is_online_order = 1,real_paid_amount,0)
        ) as online_consume_amount,
        count( DISTINCT  if(trade_type = 0 and is_online_order = 0,parent_order_no,NULL) ) - count( DISTINCT  if(trade_type = 5 and is_online_order = 0,parent_order_no,NULL) )   as offline_consume_times,
        sum(
            if(is_online_order = 0,real_paid_amount,0)
        )  as offline_consume_amount
    from dwm.dwm_mem_sell_order_i where dt = '2023-11-14'
    group by trade_date,zt_id
    union all
    -- 首次消费
    select
        trade_date,
        zt_id,
​
        0 as is_register,
        0 as is_recharge,
        0 as recharge_times,
        0 as recharge_amount,
        0 as is_consume,
        0 as consume_times,
        0 as consume_amount,
​
        1 as is_first_consume,
        store_no as first_consume_store,
        sale_amount as first_consume_amount,
​
        0 as is_balance_consume,
        0 as balance_consume_times,
        0 as balance_pay_amount,
        0 as balance_consume_amount,
        0 as is_point_consume,
        0 as point_consume_times,
        0 as point_pay_amount,
        0 as point_consume_amount,
        0 as point_add,
        0 as point_reduce,
        0 as point_change,
        0 as online_consume_times,
        0 as online_consume_amount,
        0 as offline_consume_times,
        0 as offline_consume_amount
​
    from dwm.dwm_mem_first_buy_i where dt = '2023-11-14'
    union all
    -- 积分变动表
    select
        trade_date,
        zt_id,
​
        0 as is_register,
        0 as is_recharge,
        0 as recharge_times,
        0 as recharge_amount,
        0 as is_consume,
        0 as consume_times,
        0 as consume_amount,
​
        0 as is_first_consume,
        '' as first_consume_store,
        0 as first_consume_amount,
​
        0 as is_balance_consume,
        0 as balance_consume_times,
        0 as balance_pay_amount,
        0 as balance_consume_amount,
        0 as is_point_consume,
        0 as point_consume_times,
        0 as point_pay_amount,
        0 as point_consume_amount,
        point_add,
        point_reduce,
        point_change,
        0 as online_consume_times,
        0 as online_consume_amount,
        0 as offline_consume_times,
        0 as offline_consume_amount
    from dwd.dwd_mem_member_point_change_i where dt = '2023-11-14'
),
t2 as (
    select
        trade_date,
        zt_id,
​
        max(is_register) as is_register,
​
        max(is_recharge) as is_recharge,
        sum(recharge_times) as recharge_times,
        sum(recharge_amount) as recharge_amount,
​
        max(is_consume)  as is_consume,
        sum(consume_times) as consume_times,
        sum(consume_amount) as consume_amount,
​
        max(is_first_consume) as is_first_consume,
        max(first_consume_store) as first_consume_store,
        sum(first_consume_amount) as first_consume_amount,
​
        max(is_balance_consume) as is_balance_consume,
        sum(balance_consume_times) as balance_consume_times,
        sum(balance_pay_amount) as balance_pay_amount,
        sum(balance_consume_amount) as balance_consume_amount,
​
        max(is_point_consume) as is_point_consume,
        sum(point_consume_times) as point_consume_times,
        sum(point_pay_amount) as point_pay_amount,
        sum(point_consume_amount) as point_consume_amount,
​
        sum(point_add) as point_add,
        sum(point_reduce) as point_reduce,
        sum(point_change) as point_change,
​
        sum(online_consume_times) as online_consume_times,
        sum(online_consume_amount) as online_consume_amount,
        sum(offline_consume_times) as offline_consume_times,
        sum(offline_consume_amount) as offline_consume_amount,
​
        trade_date as dt
    from t1
    group by trade_date,zt_id
)
insert overwrite table dwm.dwm_mem_member_behavior_day_i partition (dt)
select
    t2.trade_date,
    t3.week_trade_date,
    t3.month_trade_date,
    t2.zt_id,
    t4.bind_md,
    t4.reg_md,
    t4.reg_time,
    t2.is_register,
    t2.is_recharge,
    t2.recharge_times,
    t2.recharge_amount,
    t2.is_consume,
    t2.consume_times,
    t2.consume_amount,
    t2.is_first_consume,
    t2.first_consume_store,
    t2.first_consume_amount,
    t2.is_balance_consume,
    t2.balance_consume_times,
    t2.balance_pay_amount,
    t2.balance_consume_amount,
    t2.is_point_consume,
    t2.point_consume_times,
    t2.point_pay_amount,
    t2.point_consume_amount,
    t2.point_add,
    t2.point_reduce,
    t2.point_change,
    t2.online_consume_times,
    t2.online_consume_amount,
    t2.offline_consume_times,
    t2.offline_consume_amount,
    t2.dt
​
from t2 left join dim.dwd_dim_date_f t3 on t2.trade_date = t3.trade_date
    left join dwd.dwd_mem_member_union_i t4 on t2.zt_id = t4.zt_id and t4.end_date = '9999-99-99'
    
-- 说明: 在实施中 大家需要调整日期, 依次将14~20号的每天会员的余额数据跑出来即可
/*  在生产环境中(工作中), 我们可以通过海豚调度器提供的补数方案, 指定需要补数的范围, 调度器会自动将过去的几天数据全部补回来(无需执行, 了解即可, 面试中按照这个说即可)*/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/218680.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

8000元投影仪值得买吗?选择一步到位当贝X5 Ultra不用担心白天看不见

随着生活方式的变化&#xff0c;现在越来越多家用将家里的电视机换成屏幕更大的投影仪&#xff0c;投影仪似乎要逐渐取代电视机在家庭中的位置&#xff1b;然而近日在抖音刷到河南广播电视台民生频道的一个视频&#xff1a;河南郑州一小伙花了八千多买了极米投影仪&#xff0c;…

Scala 从入门到精通

Scala 从入门到精通 数据类型 pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http:…

LeetCode [中等]全排列(回溯算法)

46. 全排列 - 力扣&#xff08;LeetCode&#xff09; 回溯法 采用试错的思想&#xff0c;它尝试分步的去解决一个问题。在分步解决问题的过程中&#xff0c;当它通过尝试发现现有的分步答案不能得到有效的正确的解答的时候&#xff0c;它将取消上一步甚至是上几步的计算&…

怎么对文件加密?文件加密软件操作保姆式演示!

大家是不是遇到过这种情况&#xff0c;文件一个不小心就被别人轻易外发出去&#xff0c;并且还是特别重要的内容。在企业中这种现象已经非常常见啦。 今天就给友友们&#xff0c;分享一款神器&#xff0c;它可以让你点点鼠标&#xff0c;就对企业的重要文件进行加密。 1、获取…

学习php中使用composer下载安装firebase/php-jwt 以及调用方法

学习php中使用composer下载安装firebase/php-jwt 以及调用方法 1、安装firebase/php-jwt2、封装jwt类 1、安装firebase/php-jwt composer require firebase/php-jwt安装好以后出现以下文件: 2、封装jwt类 根据所使用的php框架&#xff0c;在指定目录创建 Token.php <?ph…

llama.cpp部署(windows)

一、下载源码和模型 下载源码和模型 # 下载源码 git clone https://github.com/ggerganov/llama.cpp.git# 下载llama-7b模型 git clone https://www.modelscope.cn/skyline2006/llama-7b.git查看cmake版本&#xff1a; D:\pyworkspace\llama_cpp\llama.cpp\build>cmake --…

Angular 进阶之四:SSR 应用场景与局限

应用场景 内容丰富&#xff0c;复杂交互的动态网页&#xff0c;对首屏加载有要求的项目&#xff0c;对 seo 有要求的项目&#xff08;因为服务端第一次渲染的时候&#xff0c;已经把关键字和标题渲染到响应的 html 中了&#xff0c;爬虫能够抓取到此静态内容&#xff0c;因此更…

修改python打包后的窗体图标、任务栏图标、exe图标

前言 我python开发的GUI界面(图形用户界面)一直是tkinter&#xff0c;打包exe一直是Pyinstaller。但是打包出来的exe图标、状态栏图标、窗体左上角图标一直是默认的羽毛&#xff0c;我想自定义。 效果 最后使用base64创建临时ico解决了该问题 步骤 创建icoToBase64.py&am…

如何使用 Oracle SQL Developer 连接 pgvector

如何使用 Oracle SQL Developer 连接 pgvector 1. 下载 postgresql 的 jdbc 驱动2. Oracle SQL Developer 配置第三方驱动3. Oracle SQL Developer 配置 postgres 连接 1. 下载 postgresql 的 jdbc 驱动 访问 https://jdbc.postgresql.org/download/&#xff0c;下载驱动&…

09.复刻ChatGPT,自我进化,AI多智能体

文章目录 复刻ChatGPT原因准备开整ALpacaVicuna GPT-4 EvaluationDolly 2.0其他合集Self-improve 自我进化表现形式法1&#xff1a;自我催眠法2&#xff1a;Agent交互法3&#xff1a;ReasonAct AI多智能体AI规划角色的一天加入亿点点细节&#xff08;外界刺激&#xff09;Refle…

STM32存储左右互搏 SPI总线读写FRAM MB85RS16

STM32存储左右互搏 I2C总线读写FRAM MB85RS16 在中低容量存储领域&#xff0c;除了FLASH的使用&#xff0c;&#xff0c;还有铁电存储器FRAM的使用&#xff0c;相对于FLASH&#xff0c;FRAM写操作时不需要预擦除&#xff0c;所以执行写操作时可以达到更高的速度&#xff0c;其…

【教程】苹果推送证书的创建和使用流程详解

摘要 本篇博客主要介绍了苹果推送证书的使用流程。首先&#xff0c;在苹果开发者中心创建推送证书&#xff0c;然后在应用程序中使用该证书进行消息推送。文章详细说明了创建推送证书的步骤&#xff0c;并提供了在应用程序中注册推送服务、发送推送消息以及处理推送消息的相关…

深入浅出理解kafka ---- 万字总结

1.Kafka简介 Kafka 本质上是一个 MQ&#xff08;Message Queue&#xff09;&#xff0c;使用消息队列的优点&#xff1a; 解耦&#xff1a;允许独立的扩展或修改队列两边的处理过程。可恢复性&#xff1a;即使一个处理消息的进程挂掉&#xff0c;加入队列中的消息仍然可以在系…

赛氪网荣膺地理标志语言服务教育与实践基地联盟理事会员单位

随着地理标志产品推介需求的持续扩大&#xff0c;知识产权保护和语言服务行业面临着新的挑战和机遇。在这个背景下&#xff0c;知识产权出版社指导下的地理标志语言服务教育与实践基地联盟应运而生&#xff0c;旨在推动地理标志产品的推广和知识产权保护。赛氪网作为项目运营方…

单行文本溢出,多行文本溢出的省略样式

单行文本溢出 效果&#xff1a; html <div>你好呀&#xff01;你好呀&#xff01;你好呀&#xff01;你好呀&#xff01;你好呀&#xff01;你好呀&#xff01;你好呀&#xff01;你好呀&#xff01;你好呀&#xff01;</div> css: <style>div{width: 300p…

Python中的内省与反射机制及其应用场景

1. 概述 在计算机学中&#xff0c;反射式编程&#xff08;英语&#xff1a;reflective programming&#xff09;或反射&#xff08;英语&#xff1a;reflection&#xff09;&#xff0c;是指计算机程序在运行时&#xff08;runtime&#xff09;可以访问、检测和修改它本身状态或…

C++基础 -40- STL库之Vectors向量容器

Vectors 包含着一系列连续存储的元素,类似数组。 Vectors 定义格式&#xff08;需要调用头文件&#xff09; 赋值 遍历 全部代码段 #include "iostream" #include "vector" using namespace std;int main() {//定义vector<string> array1;//使…

【数据结构】顺序栈与链栈

栈的特点是后进先出或先进后出&#xff0c;简称LIFO或FILO&#xff0c;通常top时刻表示栈顶的位置序号&#xff0c;一般空栈时top-1&#xff1b;入栈栈顶指针加1&#xff0c;s->top;出栈栈顶指针减1&#xff0c;s->top-- 【顺序栈】 定义&#xff1a; typedef struct {…

synchronized底层原理(二)

书接上文 文章目录 1. 锁升级原理2. Synchronized锁优化1. 偏向锁批量重偏向&批量撤销2. 自旋优化3. 锁粗化4. 锁消除 1. 锁升级原理 前面介绍了对象的几种加锁状态&#xff0c;分别是无锁、偏向锁、轻量级锁和重量级锁。有下面几个关键点&#xff1a; 当开启JVM偏向延迟…

外贸电商ERP品牌有哪些

随着现代物流科技的发展进步&#xff0c;外贸电商行业也迎来新的发展阶段&#xff0c;各种经营数据的统计分析工作量较大。同时还有不少商贸企业经营管理工作涉及多货币、多汇率核算、多店铺数据协同、多业务模式等&#xff0c;而想要高效处理这些事务&#xff0c;传统的管理模…