Python Opencv实践 - Yolov3目标检测

        本文使用CPU来做运算,未使用GPU。练习项目,参考了网上部分资料。

        如果要用TensorFlow做检测,可以参考这里

使用GPU运行基于pytorch的yolov3代码的准备工作_little han的博客-CSDN博客文章浏览阅读943次。记录一下自己刚拿到带独显的电脑,如何成功使用上GPU跑程序的过程。List item环境:win10平台:pycharm代码是基于pytorch的yolo目标检测程序,是B站的一个up分享的,链接如下:https://www.bilibili.com/video/BV14f4y1q7ms1 下载安装cuda以及CUDNN教程参考:深度学习环境搭建(GPU)CUDA安装(完全版)注意:教程中cuda的安装地址选择系统默认值,否则容易出错,即系统找不到路径。在配置路径时,可以先检查自己的cudahttps://blog.csdn.net/weixin_42217041/article/details/118107802

        以下是代码,仅供参考:

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

#读取支持的类名文件coco.names
classNamesFile = './coco.names'
classNames = []
with open(classNamesFile,'rt') as f:
    classNames = f.read().rstrip('\n').split('\n')
classNum = len(classNames)
print('Total ' + str(classNum) + ' classes: ')
print(classNames)

#置信度阈值
confidenceThreshold = 0.5
#非极大值抑制参数
NMSThreshold = 0.3
#Blob参数
targetWidth = 608
#yolov3的模型配置和权重
modelConfigFile = './yolov3.cfg'
modelWeightsFile = './yolov3.weights'
#读取dnn网络
net = cv.dnn.readNetFromDarknet(modelConfigFile, modelWeightsFile)
#设置网络偏好使用的后端和目标,这里使用CPU
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
#获取网络的层名
layerNames = net.getLayerNames()
#print("All layer names:")
#print(layerNames)
#获得未连接的输出层
#https://blog.csdn.net/weixin_43745234/article/details/124628811
outputLayerNames = [layerNames[i - 1] for i in net.getUnconnectedOutLayers()]
print(outputLayerNames)

#读取视频
video = cv.VideoCapture('../../SampleVideos/Party.mp4')
width = video.get(cv.CAP_PROP_FRAME_WIDTH)
height = video.get(cv.CAP_PROP_FRAME_HEIGHT)
fps = video.get(cv.CAP_PROP_FPS)
fourcc = int(video.get(cv.CAP_PROP_FOURCC))
totalFrames = video.get(cv.CAP_PROP_FRAME_COUNT)
print("Video Properties: resolution - (", width, height, ") FPS - "
      , fps, " FOURCC - "
      , chr(fourcc&0xFF), chr((fourcc>>8)&0xFF), chr((fourcc>>16)&0xFF),chr((fourcc>>24)&0xFF)
      , " Frame Count - ", totalFrames)

def DebugOutputs(outputs):
    print("Length of Outputs:")
    print(len(outputs))
    for i in range(len(outputs)):
        print(outputs[i].shape)
        print(outputs[i][0])

def FindObjects(outputs, img, confidenceThreshold):
    h,w,c = img.shape
    print(h,w,c)
    boxes = []
    classIds = []
    confidences = []

    for output in outputs:
        for detection in output:
            scores = detection[5:]
            classId = np.argmax(scores)
            confidence = scores[classId]
            #设置置信度阈值
            if confidence > confidenceThreshold:
                #yolov3的输出层的shape一般是一个二维数组(nBoxes, 85)
                #nBoxes 表示该层输出的边界框的数量
                #85列信息 表示每个边框相关的信息,比如边框位置(中心X,Y,长度和宽度W,H(百分比)),
                #        第五个值为该边框最有可能的物体分类ID号(confidence,置信度)
                #        剩下的80个位置的值是每一类物体的ID和为该物体的概率信息等
                #print(detection)
                #print(detection[0],detection[1],detection[2],detection[3],detection[4])
                boxWidth = int(detection[2] * w)
                boxHeight = int(detection[3] * h)
                boxX,boxY = int(detection[0] * w - boxWidth / 2),int(detection[1] * h - boxHeight / 2)
                boxes.append([boxX,boxY,boxWidth,boxHeight])
                classIds.append(classId)
                confidences.append(float(confidence))

    #print("Detected classes:")
    #for id in classIds:
        #print(classNames[id])
    #非极大值抑制
    indices = cv.dnn.NMSBoxes(boxes, confidences, confidenceThreshold, NMSThreshold)
    #print(indices)
    for index in indices:
        box = boxes[index]
        x,y,w,h = box[0],box[1],box[2],box[3]
        #print(box)
        #绘制边框和文字信息
        cv.rectangle(img, (x,y), (x+w,y+h), (0,255,0),2)
        text = '{}: {:.3f}'.format(classNames[classIds[index]], confidences[index])
        (text_w, text_h), baseline = cv.getTextSize(text, cv.FONT_HERSHEY_SIMPLEX, 0.5, 2)
        cv.rectangle(img, (x, y - text_h - baseline), (x + text_w, y), (255,0,255), -1)
        cv.putText(img, text, (x, y - 5), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)
        
while (True):
    ret,frame = video.read()
    if ret == False:
        break;
    #从Image创建blob
    #参考资料:https://blog.csdn.net/weixin_42216109/article/details/103010206
    blob = cv.dnn.blobFromImage(frame, 1/255, (targetWidth, targetWidth), [0,0,0])
    net.setInput(blob)
    #拿到输出层的结果
    outputs = net.forward(outputLayerNames)
    #DebugOutputs(outputs)
    FindObjects(outputs, frame, confidenceThreshold)
    cv.imshow('VideoPlayer', frame)
    if cv.waitKey(1) & 0xFF == ord('q'):
        break;

video.release()
cv.destroyAllWindows()

运行结果,还不错:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/217014.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

卷积神经网络(CNN):艺术作品识别

文章目录 一、前言一、设置GPU二、导入数据1. 导入数据2. 检查数据3. 配置数据集4. 数据可视化 三、构建模型四、编译五、训练模型六、评估模型1. Accuracy与Loss图2. 混淆矩阵3. 各项指标评估 一、前言 我的环境: 语言环境:Python3.6.5编译器&#xf…

继承 多态 拆箱装箱 128陷阱 枚举类

继承 在java里一个类只能继承一个类,但可以被多个类继承;c里一个类可以继承多个类; 子类可以使用父类的方法; 在java中,Object是所有类的父类; equals方法比较的是对象是否指向同一个地方,这个方…

原生横向滚动条 吸附 页面底部

效果图 /** 横向滚动条 吸附 页面底部 */ export class StickyHorizontalScrollBar {constructor(options {}) {const { el, style } optionsthis.createScrollbar(style)this.insertScrollbar(el)this.setScrollbarSize()this.onEvent()}/** 创建滚轴组件元素 */createS…

Windows下打包C++程序无法执行:无法定位程序输入点于动态链接库

1、问题描述 环境&#xff1a;CLionCMakeMinGW64遇到问题&#xff1a;打包的exe无法运行&#xff0c;提示无法定位程序输入点于动态链接库。 2、解决思路 ​ 通过注释头文件的方式&#xff0c;初步定位问题是因为使用了#include <thread> 多线程库引起的。而且exe文件…

外包干了2个月,技术倒退2年。。。。。

先说一下自己的情况&#xff0c;本科生&#xff0c;20年通过校招进入深圳某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年国庆&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…

如何创建maven项目的多模块项目

Maven多模块项目是指一个Maven项目中包含多个子模块&#xff0c;每个子模块又是一个独立的Maven项目&#xff0c;但它们之间可以存在依赖关系。Maven多模块项目可以方便地管理多个子模块的依赖和构建过程&#xff0c;同时也可以提高项目的可维护性和可扩展性。创建maven项目的父…

ChatGPT发布一年后,搜索引擎的日子还好吗?

导读&#xff1a;生成式AI&#xff0c;搜索引擎的终结者还是进化加速器 ChatGPT发布刚刚一年&#xff0c;互联网世界已经换了人间。 2023年&#xff0c;以ChatGPT和大模型为代表的生成式AI浪潮对全球互联网、云计算、人工智能领域都带来巨大冲击。而且生成式AI在各行各业的应用…

深入理解JVM虚拟机第二十七篇:详解JVM当中InvokeDynamic字节码指令,Java是动态类型语言么?

😉😉 学习交流群: ✅✅1:这是孙哥suns给大家的福利! ✨✨2:我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 🥭🥭3:QQ群:583783824 📚📚 工作微信:BigTreeJava 拉你进微信群,免费领取! 🍎🍎4:本文章内容出自上述:Sp…

[ROS2] --- ROS diff ROS2

1 ROS存在的问题 一旦Ros Master主节点挂掉后&#xff0c;就会造成整个系统通信的异常,通信基于TCP实现&#xff0c;实时性差、系统开销大对Python3支持不友好&#xff0c;需要重新编译消息机制不兼容没有加密机制、安全性不高 2 ROS and ROS2架构对比 ROS和ROS2架构如下图所…

Redis实战篇笔记(最终篇)

Redis实战篇笔记&#xff08;七&#xff09; 文章目录 Redis实战篇笔记&#xff08;七&#xff09;前言达人探店发布和查看探店笔记点赞点赞排行榜 好友关注关注和取关共同关注关注推送关注推荐的实现 总结 前言 本系列文章是Redis实战篇笔记的最后一篇&#xff0c;那么到这里…

如何使用cpolar内网穿透工具实现公网SSH远程访问Deepin

文章目录 前言1. 开启SSH服务2. Deppin安装Cpolar3. 配置ssh公网地址4. 公网远程SSH连接5. 固定连接SSH公网地址6. SSH固定地址连接测试 前言 Deepin操作系统是一个基于Debian的Linux操作系统&#xff0c;专注于使用者对日常办公、学习、生活和娱乐的操作体验的极致&#xff0…

卷积神经网络(CNN):乳腺癌识别.ipynb

文章目录 一、前言一、设置GPU二、导入数据1. 导入数据2. 检查数据3. 配置数据集4. 数据可视化 三、构建模型四、编译五、训练模型六、评估模型1. Accuracy与Loss图2. 混淆矩阵3. 各项指标评估 一、前言 我的环境&#xff1a; 语言环境&#xff1a;Python3.6.5编译器&#xf…

(C语言)交换变量

在主函数中定义两个双精度变量x,y&#xff0c;并输入值&#xff0c;编写一个函数实现交换变量x,y&#xff0c;要求函数的参数是指针类型&#xff0c;并编写一个主函数进行调用。 #include<stdio.h> void swap(double *x,double *y) {double t;t *x;*x *y;*y t;} int …

Web前端 ---- 【vue】vue 组件传值(props、全局事件总线、消息的订阅与发布)

目录 前言 父子组件 父传子 子传父 全局事件总线 什么叫全局事件总线 如何创建全局事件总线 如何在组件上获取到这个全局vc对象 最常用的创建全局事件总线 兄弟组件 消息订阅与发布 安装 使用 爷孙组件 前言 在上篇文章我们介绍了父子组件之间的传值通信&#xff…

软件平台架构设计与技术管理之道笔记

软件平台架构设计与技术管理之道笔记 认知 领导软件平台各方面的工作&#xff0c;对技术底蕴、思维模式、决策能力、工作风格、文化铸造等方面都有极高的要求&#xff0c;可以称之为“领域智慧”。认知盲区的代价是巨大的&#xff0c;“不知”比“不会”的后果更严重&#xf…

【VRTK】【VR开发】【Unity】10-连续移动

课程配套学习资源下载 https://download.csdn.net/download/weixin_41697242/88485426?spm=1001.2014.3001.5503 【概述】 连续移动与瞬移有如下不同: 连续移动不容易打断沉浸对于新手或者不适应者来说更容易晕动 我对玩家的建议:连续移动前后左右可以用摇杆,转向用自己…

是时候重估荣耀了

文 | 智能相对论 作者 | 叶远风 在更换董事长后&#xff0c;荣耀的上市计划总算落定。 除了“借壳”被否认&#xff0c;外界对荣耀所有上市的猜想基本都被印证&#xff0c;此外CEO赵明明确表示会在境内上市。 在三年的长途奔袭后&#xff0c;毫无疑问荣耀来了到一个重要关口…

【电源专题】什么是电源管理

电源管理为什么重要? 在电子系统和电路的设计中,负载往往需要恒定的电流电压,所以最先考虑的就是电源电路的设计。电源管理所考虑的问题是如何将电源有效分配给系统的不同组件,保障系统不同的负载正常运行。 如电源的输入是交流 (AC) 或直流 (DC)?输入电压是高于或低于输…

JavaEE之多线程编程(一):基础篇

文章目录 一、关于操作系统一、认识进程 process二、认识线程三、进程和线程的区别&#xff08;重点&#xff01;&#xff09;四、Java的线程和操作系统线程的关系五、第一个多线程编程 一、关于操作系统 【操作系统】 驱动程序&#xff1a; 如&#xff1a;我们知道JDBC的驱动程…

centos7 设置静态ip

文章目录 设置VMware主机设置centos7 设置 设置VMware 主机设置 centos7 设置 vim /etc/sysconfig/network-scripts/ifcfg-ens33重启网络服务 service network restart检验配置是否成功 ifconfig ip addr