卷积神经网络(CNN):艺术作品识别

文章目录

  • 一、前言
  • 一、设置GPU
  • 二、导入数据
    • 1. 导入数据
    • 2. 检查数据
    • 3. 配置数据集
    • 4. 数据可视化
  • 三、构建模型
  • 四、编译
  • 五、训练模型
  • 六、评估模型
    • 1. Accuracy与Loss图
    • 2. 混淆矩阵
    • 3. 各项指标评估

一、前言

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1

往期精彩内容:

  • 卷积神经网络(CNN)实现mnist手写数字识别
  • 卷积神经网络(CNN)多种图片分类的实现
  • 卷积神经网络(CNN)衣服图像分类的实现
  • 卷积神经网络(CNN)鲜花识别
  • 卷积神经网络(CNN)天气识别
  • 卷积神经网络(VGG-16)识别海贼王草帽一伙
  • 卷积神经网络(ResNet-50)鸟类识别
  • 卷积神经网络(AlexNet)鸟类识别
  • 卷积神经网络(CNN)识别验证码

来自专栏:机器学习与深度学习算法推荐

一、设置GPU

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
import matplotlib.pyplot as plt
import os,PIL,pathlib
import numpy as np
import pandas as pd
import warnings
from tensorflow import keras

warnings.filterwarnings("ignore")#忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

二、导入数据

1. 导入数据

import pathlib

data_dir = "./27-data/"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)
图片总数为: 3776
batch_size = 16
img_height = 224
img_width  = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 3776 files belonging to 10 classes.
Using 3021 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 3776 files belonging to 10 classes.
Using 755 files for validation.
class_names = train_ds.class_names
print(class_names)
['Alfred_Sisley', 'Edgar_Degas', 'Francisco_Goya', 'Marc_Chagall', 'Pablo_Picasso', 'Paul_Gauguin', 'Peter_Paul_Rubens', 'Rembrandt', 'Titian', 'Vincent_van_Gogh']

2. 检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(16, 224, 224, 3)
(16,)

3. 配置数据集

AUTOTUNE = tf.data.AUTOTUNE

def train_preprocessing(image,label):
    return (image/255.0,label)

train_ds = (
    train_ds.cache()
    .shuffle(2000)
    .map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)           # 在image_dataset_from_directory处已经设置了batch_size
    .prefetch(buffer_size=AUTOTUNE)
)

val_ds = (
    val_ds.cache()
    .shuffle(2000)
    .map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)         # 在image_dataset_from_directory处已经设置了batch_size
    .prefetch(buffer_size=AUTOTUNE)
)

4. 数据可视化

plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("数据展示")

for images, labels in train_ds.take(1):
    for i in range(15):
        plt.subplot(4, 5, i + 1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)

        # 显示图片
        plt.imshow(images[i])
        # 显示标签
        plt.xlabel(class_names[labels[i]-1])

plt.show()

在这里插入图片描述

三、构建模型

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout,BatchNormalization,Activation

# Load pre-trained model
base_model = keras.applications.ResNet50(weights='imagenet', include_top=False, input_shape=(img_width,img_height,3))

for layer in base_model.layers:
    layer.trainable = True
    
# Add layers at the end
X = base_model.output
X = Flatten()(X)

X = Dense(512, kernel_initializer='he_uniform')(X)
#X = Dropout(0.5)(X)
X = BatchNormalization()(X)
X = Activation('relu')(X)

X = Dense(16, kernel_initializer='he_uniform')(X)
#X = Dropout(0.5)(X)
X = BatchNormalization()(X)
X = Activation('relu')(X)

output = Dense(len(class_names), activation='softmax')(X)

model = Model(inputs=base_model.input, outputs=output)

四、编译

optimizer = tf.keras.optimizers.Adam(lr=1e-4)

model.compile(optimizer=optimizer,
                loss='sparse_categorical_crossentropy',
                metrics=['accuracy'])

五、训练模型

from tensorflow.keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler

NO_EPOCHS = 15
PATIENCE  = 5
VERBOSE   = 1

# 设置动态学习率
# annealer = LearningRateScheduler(lambda x: 1e-3 * 0.99 ** (x+NO_EPOCHS))

# 设置早停
earlystopper = EarlyStopping(monitor='loss', patience=PATIENCE, verbose=VERBOSE)

# 
checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
                                verbose=VERBOSE,
                                save_best_only=True,
                                save_weights_only=True)
train_model  = model.fit(train_ds,
                  epochs=NO_EPOCHS,
                  verbose=1,
                  validation_data=val_ds,
                  callbacks=[earlystopper, checkpointer])

六、评估模型

1. Accuracy与Loss图

acc = train_model.history['accuracy']
val_acc = train_model.history['val_accuracy']

loss = train_model.history['loss']
val_loss = train_model.history['val_loss']

epochs_range = range(len(acc))

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2. 混淆矩阵

from sklearn.metrics import confusion_matrix
import seaborn as sns
import pandas as pd

# 定义一个绘制混淆矩阵图的函数
def plot_cm(labels, predictions):
    
    # 生成混淆矩阵
    conf_numpy = confusion_matrix(labels, predictions)
    # 将矩阵转化为 DataFrame
    conf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)  
    
    plt.figure(figsize=(8,7))
    
    sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")
    
    plt.title('混淆矩阵',fontsize=15)
    plt.ylabel('真实值',fontsize=14)
    plt.xlabel('预测值',fontsize=14)
val_pre   = []
val_label = []

for images, labels in val_ds:#这里可以取部分验证数据(.take(1))生成混淆矩阵
    for image, label in zip(images, labels):
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(image, 0) 
        # 使用模型预测图片中的人物
        prediction = model.predict(img_array)

        val_pre.append(class_names[np.argmax(prediction)])
        val_label.append(class_names[label])
plot_cm(val_label, val_pre)

3. 各项指标评估

from sklearn import metrics

def test_accuracy_report(model):
    print(metrics.classification_report(val_label, val_pre, target_names=class_names)) 
    score = model.evaluate(val_ds, verbose=0)
    print('Loss function: %s, accuracy:' % score[0], score[1])
    
test_accuracy_report(model)

											precision    recall  f1-score   support

    Alfred_Sisley       0.76      0.98      0.86        53
      Edgar_Degas       0.89      0.94      0.92       132
   Francisco_Goya       0.89      0.69      0.77        70
     Marc_Chagall       0.85      0.94      0.89        48
    Pablo_Picasso       0.89      0.74      0.81        90
     Paul_Gauguin       0.94      0.84      0.89        57
Peter_Paul_Rubens       0.71      0.86      0.78        29
        Rembrandt       0.66      0.92      0.77        48
           Titian       0.90      0.72      0.80        65
 Vincent_van_Gogh       0.88      0.87      0.87       163

         accuracy                           0.85       755
        macro avg       0.84      0.85      0.84       755
     weighted avg       0.86      0.85      0.85       755

Loss function: 0.5761227011680603, accuracy: 0.8490065932273865

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/217013.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

继承 多态 拆箱装箱 128陷阱 枚举类

继承 在java里一个类只能继承一个类,但可以被多个类继承;c里一个类可以继承多个类; 子类可以使用父类的方法; 在java中,Object是所有类的父类; equals方法比较的是对象是否指向同一个地方,这个方…

原生横向滚动条 吸附 页面底部

效果图 /** 横向滚动条 吸附 页面底部 */ export class StickyHorizontalScrollBar {constructor(options {}) {const { el, style } optionsthis.createScrollbar(style)this.insertScrollbar(el)this.setScrollbarSize()this.onEvent()}/** 创建滚轴组件元素 */createS…

Windows下打包C++程序无法执行:无法定位程序输入点于动态链接库

1、问题描述 环境&#xff1a;CLionCMakeMinGW64遇到问题&#xff1a;打包的exe无法运行&#xff0c;提示无法定位程序输入点于动态链接库。 2、解决思路 ​ 通过注释头文件的方式&#xff0c;初步定位问题是因为使用了#include <thread> 多线程库引起的。而且exe文件…

外包干了2个月,技术倒退2年。。。。。

先说一下自己的情况&#xff0c;本科生&#xff0c;20年通过校招进入深圳某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年国庆&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…

如何创建maven项目的多模块项目

Maven多模块项目是指一个Maven项目中包含多个子模块&#xff0c;每个子模块又是一个独立的Maven项目&#xff0c;但它们之间可以存在依赖关系。Maven多模块项目可以方便地管理多个子模块的依赖和构建过程&#xff0c;同时也可以提高项目的可维护性和可扩展性。创建maven项目的父…

ChatGPT发布一年后,搜索引擎的日子还好吗?

导读&#xff1a;生成式AI&#xff0c;搜索引擎的终结者还是进化加速器 ChatGPT发布刚刚一年&#xff0c;互联网世界已经换了人间。 2023年&#xff0c;以ChatGPT和大模型为代表的生成式AI浪潮对全球互联网、云计算、人工智能领域都带来巨大冲击。而且生成式AI在各行各业的应用…

深入理解JVM虚拟机第二十七篇:详解JVM当中InvokeDynamic字节码指令,Java是动态类型语言么?

😉😉 学习交流群: ✅✅1:这是孙哥suns给大家的福利! ✨✨2:我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 🥭🥭3:QQ群:583783824 📚📚 工作微信:BigTreeJava 拉你进微信群,免费领取! 🍎🍎4:本文章内容出自上述:Sp…

[ROS2] --- ROS diff ROS2

1 ROS存在的问题 一旦Ros Master主节点挂掉后&#xff0c;就会造成整个系统通信的异常,通信基于TCP实现&#xff0c;实时性差、系统开销大对Python3支持不友好&#xff0c;需要重新编译消息机制不兼容没有加密机制、安全性不高 2 ROS and ROS2架构对比 ROS和ROS2架构如下图所…

Redis实战篇笔记(最终篇)

Redis实战篇笔记&#xff08;七&#xff09; 文章目录 Redis实战篇笔记&#xff08;七&#xff09;前言达人探店发布和查看探店笔记点赞点赞排行榜 好友关注关注和取关共同关注关注推送关注推荐的实现 总结 前言 本系列文章是Redis实战篇笔记的最后一篇&#xff0c;那么到这里…

如何使用cpolar内网穿透工具实现公网SSH远程访问Deepin

文章目录 前言1. 开启SSH服务2. Deppin安装Cpolar3. 配置ssh公网地址4. 公网远程SSH连接5. 固定连接SSH公网地址6. SSH固定地址连接测试 前言 Deepin操作系统是一个基于Debian的Linux操作系统&#xff0c;专注于使用者对日常办公、学习、生活和娱乐的操作体验的极致&#xff0…

卷积神经网络(CNN):乳腺癌识别.ipynb

文章目录 一、前言一、设置GPU二、导入数据1. 导入数据2. 检查数据3. 配置数据集4. 数据可视化 三、构建模型四、编译五、训练模型六、评估模型1. Accuracy与Loss图2. 混淆矩阵3. 各项指标评估 一、前言 我的环境&#xff1a; 语言环境&#xff1a;Python3.6.5编译器&#xf…

(C语言)交换变量

在主函数中定义两个双精度变量x,y&#xff0c;并输入值&#xff0c;编写一个函数实现交换变量x,y&#xff0c;要求函数的参数是指针类型&#xff0c;并编写一个主函数进行调用。 #include<stdio.h> void swap(double *x,double *y) {double t;t *x;*x *y;*y t;} int …

Web前端 ---- 【vue】vue 组件传值(props、全局事件总线、消息的订阅与发布)

目录 前言 父子组件 父传子 子传父 全局事件总线 什么叫全局事件总线 如何创建全局事件总线 如何在组件上获取到这个全局vc对象 最常用的创建全局事件总线 兄弟组件 消息订阅与发布 安装 使用 爷孙组件 前言 在上篇文章我们介绍了父子组件之间的传值通信&#xff…

软件平台架构设计与技术管理之道笔记

软件平台架构设计与技术管理之道笔记 认知 领导软件平台各方面的工作&#xff0c;对技术底蕴、思维模式、决策能力、工作风格、文化铸造等方面都有极高的要求&#xff0c;可以称之为“领域智慧”。认知盲区的代价是巨大的&#xff0c;“不知”比“不会”的后果更严重&#xf…

【VRTK】【VR开发】【Unity】10-连续移动

课程配套学习资源下载 https://download.csdn.net/download/weixin_41697242/88485426?spm=1001.2014.3001.5503 【概述】 连续移动与瞬移有如下不同: 连续移动不容易打断沉浸对于新手或者不适应者来说更容易晕动 我对玩家的建议:连续移动前后左右可以用摇杆,转向用自己…

是时候重估荣耀了

文 | 智能相对论 作者 | 叶远风 在更换董事长后&#xff0c;荣耀的上市计划总算落定。 除了“借壳”被否认&#xff0c;外界对荣耀所有上市的猜想基本都被印证&#xff0c;此外CEO赵明明确表示会在境内上市。 在三年的长途奔袭后&#xff0c;毫无疑问荣耀来了到一个重要关口…

【电源专题】什么是电源管理

电源管理为什么重要? 在电子系统和电路的设计中,负载往往需要恒定的电流电压,所以最先考虑的就是电源电路的设计。电源管理所考虑的问题是如何将电源有效分配给系统的不同组件,保障系统不同的负载正常运行。 如电源的输入是交流 (AC) 或直流 (DC)?输入电压是高于或低于输…

JavaEE之多线程编程(一):基础篇

文章目录 一、关于操作系统一、认识进程 process二、认识线程三、进程和线程的区别&#xff08;重点&#xff01;&#xff09;四、Java的线程和操作系统线程的关系五、第一个多线程编程 一、关于操作系统 【操作系统】 驱动程序&#xff1a; 如&#xff1a;我们知道JDBC的驱动程…

centos7 设置静态ip

文章目录 设置VMware主机设置centos7 设置 设置VMware 主机设置 centos7 设置 vim /etc/sysconfig/network-scripts/ifcfg-ens33重启网络服务 service network restart检验配置是否成功 ifconfig ip addr

工程师业余生活之制作蔬菜盆景

工程师业余生活陶冶情操之制作蔬菜盆景 &#xff08;蔬 果 盆 景 裝 點 家 居&#xff09; 市場上好多蔬菜瓜果,稍用一些心思,將一些價廉的蔬果製成別致的盆景, 便能使家居充滿自然氣息&#xff0c;增添生活情趣。以下介紹幾種製作方法&#xff1a; 【番薯盆景】 (番薯又名地…