【算法】动态规划中的路径问题

在这里插入图片描述

君兮_的个人主页

即使走的再远,也勿忘启程时的初心

C/C++ 游戏开发

Hello,米娜桑们,这里是君兮_,如果给算法的难度和复杂度排一个排名,那么动态规划算法一定名列前茅。今天,我们通过由简单到困难的两道题目带大家学会动态规划中的路径问题

  • 好了废话不多说,开始我们今天的学习吧!!

动态规划之路径问题

  • 一 不同路径
    • 1 题目解析
    • 2 算法原理
      • 状态表示
      • 状态转移方程
      • 初始化
        • 辅助节点初始化法
      • 填表顺序:
      • 返回值
    • 3 编写代码
  • 二 下降路径最小和
    • 1 题目解析
    • 2 算法原理
      • 状态表示
      • 状态转移方程
      • 初始化
      • 填表顺序
      • 返回值
    • 3 编写代码
  • 总结

一 不同路径

  • 原题目leetcode链接在这哦 不同路径
    在这里插入图片描述

1 题目解析

  • 如题目所示,在左上角有一个机器人,现在我们需要算出从当前位置到右下角位置一个有多少种不同的路径。
  • 注意:重点在于,我们是不能后退的,也就是说,每次进行移动时,只能朝右或者朝下移动。

题目题意理解相对比较简单,就先说到这里

2 算法原理

  • 看到这种每一步都与上面一步有所关系的题目,我们首先想到的就是动态规划算法,我们来按照之前提到的动态算法的大致解题思路来进行一步步的分析

状态表示

  • 对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
  • i. 从dp[i, j] 位置出发,到某个位置去;
  • ii. 从起始位置出发,到达dp [i, j] 位置。
    分析一下题意,我们需要到达指定的位置,因此这⾥选择第⼆种定义状态表⽰的⽅式:
    dp[i][j] 表⽰:⾛到dp[i, j] 位置处,此时一共有几条不同路径

状态转移方程

  • 有了上面的状态表示,我们就需要将dp每个位置的值建立一定的联系,方便我们之后的分析
  • 如果dp[i][j] 表⽰到达 [i, j] 位置的⽅法数,那么到达 [i, j] 位置之前的⼀⼩步,有两种情况:
  • i. 从dp [i, j] 位置的上⽅( dp[i - 1, j] 的位置)向下⾛⼀步,转移到 dp[i, j] 位置;
  • ii. 从 dp[i, j] 位置的左⽅( dp[i, j - 1] 的位置)向右⾛⼀步,转移到 dp[i, j] 位置。
    由于我们要求的是有多少种⽅法,结合我们上面对题目的解析,因此我们的状态转移⽅程就可以写出了:
 dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 
  • 注意:这里还有一个很多初学者容易搞混的地方——很多人认为,你现在算出的是通往dp[i][j]这里不同种方法,那么dp[i][j]这一步不应该再加个1吗?
    谨记我们这里算的是方法数,不是步数,因此当然不需要+1!

初始化

  • 初始化的主要目的有两个,
  • 1.防止发生越界访问
  • 2.方便我们从已知的信息推出我们需要的信息

这里教给大家一个做动态规划会经常使用的初始化方法

辅助节点初始化法

可以在dp表最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:

  • i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;

  • ii. 「下标的映射关系」。

  • 好了,相信到这里大家还是一头雾水,下面我来展开讲讲

    • 有关辅助节点,如果放在这一题来看的话,请问我们的dp[0][0]怎么算呢?
    • 因此在本题中,我们需要「添加⼀⾏」,并且「添加⼀列」来避免上述越界情况的发生
    • 因此就有了第一点,我们的辅助节点中保存的值,必须保证对我们的题目的解答没有影响,比如在这个题需将 dp[0][1] (或者dp[1][0])的位置初始化为1 ,剩下创建的值初始化为0,这样就能保证dp[1][1]位置的初始化
      在这里插入图片描述
    • 那么为什么从dp[1][1] 开始呢?我们的辅助队列相当于在最上后最右的位置帮我们又创建了一行一列来初始化,此时机器人所处的位置就变为了dp[1][1]了
    • 有关第二点,我们加了一行一列,下标的初始位就不再是dp[0][0]了,因此我们最后返回的值也不是dp[m-1][n-1]而是dp[m][n].。在这个题中下标的映射没啥太大的影响,具体的细节我们放在下个题再讨论

填表顺序:

  • 根据状态转移⽅程和题目分析的推导来看,填表的顺序就是「从上往下」填每⼀⾏,在填写每⼀⾏的时候「从左往右」填每一列

返回值

  • 上面在辅助节点已经说过了,返回值为dp[m][n]

完成上面的算法原理分析,下面我们来具体写一下代码


3 编写代码

class Solution {
public:
    int uniquePaths(int m, int n) {
    	//开辟m*n的dp表
        vector<vector<int>>dp(m+1);
       
        for(int i=0;i<dp.size();i++)
        {
            dp[i].resize(n+1,0);
        }
        dp[0][1]=1;//初始化
        //状态转移方程
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            dp[i][j]=dp[i-1][j]+dp[i][j-1];
        }
        return dp[m][n];
    }
};

在这里插入图片描述

  • 照这上面讲的算法原理一步一步照搬挺容易ac的,这里就不细讲了,重点还是放在下面这个题上

二 下降路径最小和

  • 原题leetcode链接在这里 下降路径最小和
    在这里插入图片描述

1 题目解析

  • 给你一个 n x n 的方形整数数组 matrix ,请你找出并返回通过 matrix 的下降路径的最小和 。
  • 下降路径可以从第一行中的任何元素开始,并从每一行中选择一个元素在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。

在这里插入图片描述

  • 对于两边的特殊情况,只有向右和向左可供移动

在这里插入图片描述

  • 只有中间的情况,下一行三个位置均可插入

2 算法原理

  • 一看到这种路径算不同种数啊,算最短呐,首先我们要有使用动态规划的想法

状态表示

  • 对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
    i. 从 [i, j] 位置出发,到达⽬标位置有多少种⽅式;
    ii. 从起始位置出发,到达[i, j] 位置,⼀共有多少种⽅式
    这⾥选择第⼆种定义状态表⽰的⽅式:
  • dp[i][j] 表示:到达[i, j] 位置时,所有下降路径中的最小和
  • 路径问题的状态表示都是类似的,这里就不多阐释了,自己写的时候记得结合一下dp表中存的值符合题目要求就行

状态转移方程

  • 先不考虑越界情况,对于普遍位置的dp[i, j] ,根据题意得,到达[i, j] 位置可能有三种情况:
    i. 从正上⽅ [i - 1, j] 位置转移到 [i, j] 位置;
    ii. 从左上⽅ [i - 1, j - 1] 位置转移到 [i, j] 位置;
    iii. 从右上⽅ [i - 1, j + 1] 位置转移到 [i, j] 位置;
  • 我们要的是三种情况下的「最⼩值」,然后再加上数组中在 [i, j] 位置的值。
    于是,我们可以得出状态转移方程
    dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i - 1][j +1])) + matrix[i][j]

初始化

  • 从我在题意分析中画的那个图,可以明显看出每一行的最左位置和最右位置都存在越界,因此为了防止出现这种情况,我们还是采用上面讲的辅助节点的方法来进行初始化,不同的是,此时两边都存在可能越界,因此我们要初始化一行两列,示意图如下:
    在这里插入图片描述
  • 在这里对辅助节点进行初始化时,我们由于是求最小下降路径,为了不影响原dp表结果,此时先把辅助节点都填上一个较大的值。
  • 此时,如果我们全都是较大的值,那么此时dp表第一行的初始化就会直接以这个较大值进行初始化,为了避免这种情况发生,我们将辅助节点的第一行全部初始化为0。
    在这里插入图片描述
    注意,重点来了:
  • 我们之前在辅助节点初始化方法中说过要注意下标的映射关系。
  • 这里,我们需要把原数组的值填入到当前这个dp表中,但是现在的dp表多了一行两列,因此我们之前dp[i][j]=min+matrix[i][j]就需要改成dp[i][j]=min+matrix[i-1][j-1] ,这样才能满足对应的下标关系

填表顺序

  • 题目已经明确告诉你了。从上到下

返回值

  • 注意这⾥不是返回 dp[m][n] 的值!
  • 题⽬要求「只要到达最后⼀⾏」就⾏了,因此这⾥应该返回「dp表中最后⼀⾏的最⼩值」

3 编写代码

class Solution {
public:
    int minFallingPathSum(vector<vector<int>>& matrix) {
        int n=matrix.size();
        //创建dp表
        vector<vector<int>>dp(n+1,vector<int>(n+2));
        
        //初始化
        for(int i=1;i<=n;i++)
        {
            dp[i][0]=dp[i][n+1]=999999;
        }
        
        //填dp表
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                //状态转移方程
                int ret=min(dp[i-1][j],min(dp[i-1][j+1],dp[i-1][j-1]));
               //之前的值加上此时这里数组的值
                dp[i][j]=ret+matrix[i-1][j-1];
               
            }
        }
        //找最后一行的最小值
        int min1=dp[n][1];
        for(int i=2;i<=n;i++)
        {
           if(dp[n][i]<min1)
           min1=dp[n][i];
              
        }
        return min1;

    }
};

在这里插入图片描述

  • 照着上面的算法原理步骤走,ac不是so easy啦

总结

  • 好啦,我们今天的内容就先到这里啦!向这种题光看是看到只能看个一知半解的,如果你想学好的话一定要自己认真把上面两个路径规划的题写好,光看很多算法中的细节是无法体会到的。
  • 有任何的问题和对文章内容的疑惑欢迎在评论区中提出,当然也可以私信我,我会在第一时间回复的!!

新人博主创作不易,如果感觉文章内容对你有所帮助的话不妨三连一下再走呗。你们的支持就是我更新的动力!!!

**(可莉请求你们三连支持一下博主!!!点击下方评论点赞收藏帮帮可莉吧)**

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/210459.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ios 长传发布审核+safari浏览器,直接安装ipa文件

蒲公英二维码方法 个人开发者账号发布证书AD-hoc 描述文件蒲公英上传链接通过苹果safari 浏览器下载IPA包 浏览器下载方法 前置条件 1.下载 ipa 包的设备的 uuid 已加入 苹果测试设备列表如何添加到测试列表 2.web 服务, 文件服务. 3.需要AD-hoc 描述文件 添加链接描述 1.创…

Linux系统之部署Plik临时文件上传系统

Linux系统之部署Plik临时文件上传系统 一、Plik介绍1.1 Plik简介1.2 Plik特点 二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、检查本地环境3.1 检查本地操作系统版本3.2 检查系统内核版本 四、下载Plik软件包4.1 创建下载目录4.2 下载Plik软件包4.3 查看下载的Plik软件…

卡码网语言基础课 | 18. 开房门

目录 一、 map基础 二、 map的使用 2.1 map头文件的引入 2.2 声明映射关系 2.3 插入键值 2.4 查找键的存在 三、 范围for循环 题目&#xff1a; 假设你手里有一串钥匙&#xff0c;这串钥匙上每把钥匙都有一个编号&#xff0c;对应着一个房门的编号。现给你一个房门编号&a…

C语言-指针_01

指针基础 1. 概述 地址编号&#xff1a;计算机为了存储数据&#xff0c;每一个程序在 32位 机中 占4G&#xff0c;最小操作单位 是 一个字节&#xff0c;每一个字节都有其对应的地址&#xff0c;该地址就是 地址编号。 指针&#xff1a;地址编号这个数据 的 数据类型。 指针变…

flutter开发实战-实现获取视频的缩略图封面video_thumbnail

flutter开发实战-实现获取视频的缩略图封面video_thumbnail 在很多时候&#xff0c;我们查看视频的时候&#xff0c;视频没有播放时候&#xff0c;会显示一张封面&#xff0c;可能封面没有配置图片&#xff0c;这时候就需要通过获取视频的缩略图来显示封面了。这里使用了video…

【linux】信号——信号保存+信号处理

信号保存信号处理 1.信号保存1.1信号其他相关概念1.2信号在内核中的表示 2.信号处理2.1信号的捕捉流程2.2sigset_t2.3信号集操作函数2.4实操2.5捕捉信号的方法 3.可重入函数4.volatile5.SIGCHLD信号 自我名言&#xff1a;只有努力&#xff0c;才能追逐梦想&#xff0c;只有努力…

手写链表反转

LeetCode206 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1] 1. 建立虚拟头结点辅助反转 在分析链表插入元素的时候&#xff0c;会发现如何处理头…

【Python】实现一个简单的区块链系统

本文章利用 Python 实现一个简单的功能较为完善的区块链系统&#xff08;包括区块链结构、账户、钱包、转账&#xff09;&#xff0c;采用的共识机制是 POW。 一、区块与区块链结构 Block.py import hashlib from datetime import datetimeclass Block:"""区…

简单搭建Python开发环境

Python环境安装 Python官网: Welcome to Python.org 1. 选择Python3.x版本下载&#xff0c;建议使用稳定版3.9.13&#xff08;Stable Releases&#xff09;&#xff0c;绝大数库对3.9版本Python已良好支持&#xff0c;但对3.10及以上支持不完全&#xff1a; https://www.…

华清远见嵌入式学习——C++——作业4

作业要求&#xff1a; 代码&#xff1a; #include <iostream>using namespace std;class Stu {friend const Stu operator*(const Stu &L,const Stu &R);friend bool operator<(const Stu &L,const Stu &R);friend Stu operator-(Stu &L,const S…

Git 简介及异常场景处理

一、简介 介绍Git之前&#xff0c;还得先介绍下 版本控制系统&#xff08;VCS&#xff09;&#xff0c; 和它的发展历史 纵观版本控制系统的发展历史&#xff0c;广义上讲&#xff0c;版本控制工具的历史可以分为三代&#xff1a; 第一代 第一代版本控制系统被称为本地版本控…

C语言结构体详解(一)(能看懂文字就能明白系列)

&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;个人主页&#xff1a; 古德猫宁- &#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;…

Gateway跨域解决可copy配置代码

globalcors: # 全局跨域处理配置add-to-simple-url-handler-mapping: true # 解决options请求被拦截的问题cors-configurations:[/**]:allowed-origins:- "http://localhost:8090"- "http://www.qvfan.com"allowedMethods:- "GET"- "POST&q…

C++相关闲碎记录(3)

1、reference wrapper 例如声明如下的模板&#xff1a; template <typename T> void foo(T val); 如果调用使用&#xff1a; int x; foo(std::ref(x)); T变成int&&#xff0c;而使用调用 int x; foo(std::cref(x)); T变成const int&。 这个特性被C标准库用…

【每日一题】1094. 拼车-2023.12.2

题目&#xff1a; 1094. 拼车 车上最初有 capacity 个空座位。车 只能 向一个方向行驶&#xff08;也就是说&#xff0c;不允许掉头或改变方向&#xff09; 给定整数 capacity 和一个数组 trips , trip[i] [numPassengersi, fromi, toi] 表示第 i 次旅行有 numPassengersi…

vue中中的动画组件使用及如何在vue中使用animate.css

“< Transition >” 是一个内置组件&#xff0c;这意味着它在任意别的组件中都可以被使用&#xff0c;无需注册。它可以将进入和离开动画应用到通过默认插槽传递给它的元素或组件上。进入或离开可以由以下的条件之一触发&#xff1a; 由 v-if 所触发的切换由 v-show 所触…

@2023 中国家居家具行业数字化转型分析与案例解读|商派徐礼昭

作者&#xff1a;徐礼昭&#xff08;商派市场负责人&#xff0c;重构零售实验室负责人&#xff09; 中国的家居家具行业面临着市场竞争激烈、消费者需求多变等诸多挑战。为了应对这些挑战&#xff0c;许多品牌企业开始探索数字化转型的道路&#xff0c;以提升竞争力并满足消费…

非应届生简历模板13篇

无论您是职场新人还是转行求职者&#xff0c;一份出色的简历都是获得心仪岗位的关键。本文为大家精选了13篇专业的非应届生简历模板&#xff0c;无论您的经验如何&#xff0c;都可以灵活参考借鉴&#xff0c;提升自己的简历质量。让简历脱颖而出&#xff0c;轻松斩获心仪职位&a…

np.array无法直接用matplotlib画图,因为需要借用np.squeeze先转化

文章目录 前言一、使用步骤1.没使用np.squeeze转化2.使用np.squeeze转化 前言 实际工作中&#xff0c;时而难免会遇见np.array无法直接用matplotlib画图的情况&#xff0c;这个时候&#xff0c;是因为在画图之前少了一个步骤&#xff0c;需要先借用np.squeeze先转化 一、使用步…

ES通过抽样agg聚合性能提升3-5倍

一直以来&#xff0c;es的agg聚合分析性能都比较差&#xff08;对应sql的 group by&#xff09;。特别是在超多数据中做聚合&#xff0c;在搜索的条件命中特别多结果的情况下&#xff0c;聚合分析会非常非常的慢。 一个聚合条件&#xff1a;聚合分析请求的时间 search time a…