【Python】实现一个简单的区块链系统

本文章利用 Python 实现一个简单的功能较为完善的区块链系统(包括区块链结构、账户、钱包、转账),采用的共识机制是 POW。

一、区块与区块链结构

Block.py

import hashlib
from datetime import datetime


class Block:
    """
        区块链结构:
            prev_hash:      父区块哈希值
            data:           区块内容
            timestamp:      区块创建时间
            hash:           区块哈希值
    """
    def __init__(self, data, prev_hash):
        # 将传入的父区块哈希值和数据保存到变量中
        self.prev_hash = prev_hash
        self.data = data

        # 获得当前的时间
        self.timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

        # 计算区块哈希值
        # 获取哈希对象
        message = hashlib.sha256()
        # 先将数据内容转为字符串并进行编码,再将它们哈希
        # 注意:update() 方法现在只接受 bytes 类型的数据,不接收 str 类型
        message.update(str(self.prev_hash).encode('utf-8'))
        message.update(str(self.prev_hash).encode('utf-8'))
        message.update(str(self.prev_hash).encode('utf-8'))
        # update() 更新 hash 对象,连续的调用该方法相当于连续的追加更新
        # 返回字符串类型的消息摘要
        self.hash = message.hexdigest()

 BlockChain.py

from Block import Block


class BlockChain:
    """
        区块链结构体
            blocks:         包含区块的列表
    """

    def __init__(self):
        self.blocks = []

    def add_block(self, block):
        """
        添加区块
        :param block:
        :return:
        """
        self.blocks.append(block)


# 新建区块
genesis_block = Block(data="创世区块", prev_hash="")
new_block1 = Block(data="张三转给李四一个比特币", prev_hash=genesis_block.hash)
new_block2 = Block(data="张三转给王五三个比特币", prev_hash=genesis_block.hash)

# 新建一个区块链对象
blockChain = BlockChain()
# 将刚才新建的区块加入区块链
blockChain.add_block(genesis_block)
blockChain.add_block(new_block1)
blockChain.add_block(new_block2)

# 打印区块链信息
print("区块链包含区块个数为:%d\n" % len(blockChain.blocks))
blockHeight = 0
for block in blockChain.blocks:
    print(f"本区块高度为:{blockHeight}")
    print(f"父区块哈希:{block.prev_hash}")
    print(f"区块内容:{block.data}")
    print(f"区块哈希:{block.hash}")
    print()
    blockHeight += 1

 测试结果 

二、加入工作量证明(POW)

将工作量证明加入到 Block.py 中

import hashlib
from datetime import datetime
from time import time


class Block:
    """
        区块链结构:
            prev_hash:      父区块哈希值
            data:           区块内容
            timestamp:      区块创建时间
            hash:           区块哈希值
            nonce:          随机数
    """
    def __init__(self, data, prev_hash):
        # 将传入的父区块哈希值和数据保存到变量中
        self.prev_hash = prev_hash
        self.data = data

        # 获得当前的时间
        self.timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

        # 设置随机数、哈希初始值为 None
        self.nonce = None
        self.hash = None

    # 类的 __repr__() 方法定义了实例化对象的输出信息
    def __repr__(self):
        return f"区块内容:{self.data}\n区块哈希值:{self.hash}"


class ProofOfWork:
    """
        工作量证明:
            block:          区块
            difficulty:     难度值
    """

    def __init__(self, block, difficult=5):
        self.block = block

        # 定义出块难度,默认为 5,表示有效哈希值以 5 个零开头
        self.difficulty = difficult

    def mine(self):
        """
        挖矿函数
        :return:
        """
        i = 0
        prefix = '0' * self.difficulty

        while True:
            message = hashlib.sha256()
            message.update(str(self.block.prev_hash).encode('utf-8'))
            message.update(str(self.block.data).encode('utf-8'))
            message.update(str(self.block.timestamp).encode('utf-8'))
            message.update(str(i).encode('utf-8'))
            # digest() 返回摘要,作为二进制数据字符串值
            # hexdigest() 返回摘要,作为十六进制数据字符串值
            digest = message.hexdigest()
            # str.startswith(prefix) 检测字符串是否是以 prefix(字符串)开头,返回布尔值
            if digest.startswith(prefix):
                # 幸运数字
                self.block.nonce = i
                # 区块哈希值为十六进制数据字符串摘要
                self.block.hash = digest
                return self.block
            i += 1

    def validate(self):
        """
        验证有效性
        :return:
        """
        message = hashlib.sha256()
        message.update(str(self.block.prev_hash).encode('utf-8'))
        message.update(str(self.block.data).encode('utf-8'))
        message.update(str(self.block.timestamp).encode('utf-8'))
        message.update(str(self.block.nonce).encode('utf-8'))
        digest = message.hexdigest()

        prefix = '0' * self.difficulty
        return digest.startswith(prefix)


# ++++++++测试++++++++
# 定义一个区块
b = Block(data="测试", prev_hash="")

# 定义一个工作量证明
w = ProofOfWork(b)

# 开始时间
start_time = time()
# 挖矿,并统计函数执行时间
print("+++开始挖矿+++")
valid_block = w.mine()
# 结束时间
end_time = time()
print(f"挖矿花费时间:{end_time - start_time}秒")

# 验证区块
print(f"区块哈希值是否符合规则:{w.validate()}")
print(f"区块哈希值为:{b.hash}")

测试结果

更新 BlockChain.py

from Block import Block, ProofOfWork


class BlockChain:
    """
        区块链结构体
            blocks:         包含区块的列表
    """

    def __init__(self):
        self.blocks = []

    def add_block(self, block):
        """
        添加区块
        :param block:
        :return:
        """
        self.blocks.append(block)


# 新建一个区块链对象
blockChain = BlockChain()

# 新建区块
block1 = Block(data="创世区块", prev_hash="")
w1 = ProofOfWork(block1)
genesis_block = w1.mine()
blockChain.add_block(genesis_block)

block2 = Block(data="张三转给李四一个比特币", prev_hash=genesis_block.hash)
w2 = ProofOfWork(block2)
block = w2.mine()
blockChain.add_block(block)

block3 = Block(data="张三转给王五三个比特币", prev_hash=block.hash)
w3 = ProofOfWork(block3)
block = w3.mine()
blockChain.add_block(block)

# 打印区块链信息
print("区块链包含区块个数为:%d\n" % len(blockChain.blocks))
blockHeight = 0
for block in blockChain.blocks:
    print(f"本区块高度为:{blockHeight}")
    print(f"父区块哈希:{block.prev_hash}")
    print(f"区块内容:{block.data}")
    print(f"区块哈希:{block.hash}")
    print()
    blockHeight += 1
    

 测试结果

三、实现钱包、账户、交易功能

 实现钱包、账户、交易功能要先安装非对称加密算法库 ecdsa。如果网速慢,引用下面这个网站

-i https://pypi.tuna.tsinghua.edu.cn/simple

添加钱包、账户功能 Wallet.py

import base64
import binascii
from hashlib import sha256
# 导入椭圆曲线算法
from ecdsa import SigningKey, SECP256k1, VerifyingKey


class Wallet:
    """
        钱包
    """

    def __init__(self):
        """
            钱包初始化时基于椭圆曲线生成一个唯一的秘钥对,代表区块链上一个唯一的账户
        """
        # 生成私钥
        self._private_key = SigningKey.generate(curve=SECP256k1)
        # 基于私钥生成公钥
        self._public_key = self._private_key.get_verifying_key()

    @property
    def address(self):
        """
            这里通过公钥生成地址
        """
        h = sha256(self._public_key.to_pem())
        # 地址先由公钥进行哈希算法,再进行 Base64 计算而成
        return base64.b64encode(h.digest())

    @property
    def pubkey(self):
        """
            返回公钥字符串
        """
        return self._public_key.to_pem()

    def sign(self, message):
        """
            生成数字签名
        """
        h = sha256(message.encode('utf8'))
        # 利用私钥生成签名
        # 签名生成的是一串二进制字符串,为了便于查看,这里转换为 ASCII 字符串进行输出
        return binascii.hexlify(self._private_key.sign(h.digest()))


def verify_sign(pubkey, message, signature):
    """
        验证签名
    """
    verifier = VerifyingKey.from_pem(pubkey)
    h = sha256(message.encode('utf8'))
    return verifier.verify(binascii.unhexlify(signature), h.digest())

实现转账功能 Transaction.py

import json


class Transaction:
    """
        交易的结构
    """

    def __init__(self, sender, recipient, amount):
        """
            初始化交易,设置交易的发送方、接收方和交易数量
        """
        # 交易发送者的公钥
        self.pubkey = None
        # 交易的数字签名
        self.signature = None

        if isinstance(sender, bytes):
            sender = sender.decode('utf-8')
        self.sender = sender        # 发送方
        if isinstance(recipient, bytes):
            recipient = recipient.decode('utf-8')
        self.recipient = recipient  # 接收方
        self.amount = amount        # 交易数量

    def set_sign(self, signature, pubkey):
        """
            为了便于验证这个交易的可靠性,需要发送方输入他的公钥和签名
        """
        self.signature = signature  # 签名
        self.pubkey = pubkey  # 发送方公钥

    def __repr__(self):
        """
            交易大致可分为两种,一是挖矿所得,而是转账交易
            挖矿所得无发送方,以此进行区分显示不同内容
        """
        if self.sender:
            s = f"从{self.sender}转自{self.recipient}{self.amount}个加密货币"
        elif self.recipient:
            s = f"{self.recipient}挖矿所得{self.amount}个加密货币"
        else:
            s = "error"
        return s


class TransactionEncoder(json.JSONEncoder):
    """
        定义Json的编码类,用来序列化Transaction
    """
    def default(self, obj):
        if isinstance(obj, Transaction):
            return obj.__dict__
        else:
            return json.JSONEncoder.default(self, obj)
            # return super(TransactionEncoder, self).default(obj)

更新 Block.py

import hashlib
import json
from datetime import datetime
from Transaction import Transaction, TransactionEncoder


class Block:
    """
        区块结构
            prev_hash:      父区块哈希值
            transactions:   交易对
            timestamp:      区块创建时间
            hash:           区块哈希值
            Nonce:          随机数
    """

    def __init__(self, transactions, prev_hash):
        # 将传入的父哈希值和数据保存到类变量中
        self.prev_hash = prev_hash
        # 交易列表
        self.transactions = transactions
        # 获取当前时间
        self.timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

        # 设置Nonce和哈希的初始值为None
        self.nonce = None
        self.hash = None

    # 类的 __repr__() 方法定义了实例化对象的输出信息
    def __repr__(self):
        return f"区块内容:{self.transactions}\n区块哈希值:{self.hash}"


class ProofOfWork:
    """
        工作量证明
            block:          区块
            difficulty:     难度值
    """

    def __init__(self, block, miner, difficult=5):
        self.block = block
        self.miner = miner

        # 定义工作量难度,默认为5,表示有效的哈希值以5个“0”开头
        self.difficulty = difficult

        # 添加挖矿奖励
        self.reward_amount = 1

    def mine(self):
        """
            挖矿函数
        """
        i = 0
        prefix = '0' * self.difficulty

        # 设置挖矿自动生成交易信息,添加挖矿奖励
        t = Transaction(
            sender="",
            recipient=self.miner.address,
            amount=self.reward_amount,
        )
        sig = self.miner.sign(json.dumps(t, cls=TransactionEncoder))
        t.set_sign(sig, self.miner.pubkey)
        self.block.transactions.append(t)

        while True:
            message = hashlib.sha256()
            message.update(str(self.block.prev_hash).encode('utf-8'))
            # 更新区块中的交易数据
            # message.update(str(self.block.data).encode('utf-8'))
            message.update(str(self.block.transactions).encode('utf-8'))
            message.update(str(self.block.timestamp).encode('utf-8'))
            message.update(str(i).encode("utf-8"))
            digest = message.hexdigest()
            if digest.startswith(prefix):
                self.block.nonce = i
                self.block.hash = digest
                return self.block
            i += 1

    def validate(self):
        """
            验证有效性
        """
        message = hashlib.sha256()
        message.update(str(self.block.prev_hash).encode('utf-8'))
        # 更新区块中的交易数据
        # message.update(str(self.block.data).encode('utf-8'))
        message.update(json.dumps(self.block.transactions).encode('utf-8'))
        message.update(str(self.block.timestamp).encode('utf-8'))
        message.update(str(self.block.nonce).encode('utf-8'))
        digest = message.hexdigest()

        prefix = '0' * self.difficulty
        return digest.startswith(prefix)

更新 BlockChain.py

from Block import Block, ProofOfWork
from Transaction import Transaction
from Wallet import Wallet, verify_sign


class BlockChain:
    """
        区块链结构体
            blocks:        包含的区块列表
    """

    def __init__(self):
        self.blocks = []

    def add_block(self, block):
        """
            添加区块
        """
        self.blocks.append(block)

    def print_list(self):
        print(f"区块链包含个数为:{len(self.blocks)}")
        for block in self.blocks:
            height = 0
            print(f"区块链高度为:{height}")
            print(f"父区块为:{block.prev_hash}")
            print(f"区块内容为:{block.transactions}")
            print(f"区块哈希值为:{block.hash}")
            height += 1
            print()

为了方便我们对区块链进行操作,我们可以在 BlockChain.py 中补充一些方法

# 传入用户和区块链,返回用户的“余额”
def get_balance(user, blockchain):
    balance = 0
    for block in blockchain.blocks:
        for t in block.transactions:
            if t.sender == user.address.decode():
                balance -= t.amount
            elif t.recipient == user.address.decode():
                balance += t.amount
    return balance


# user生成创世区块(新建区块链),并添加到区块链中
def generate_genesis_block(user):
    blockchain = BlockChain()
    new_block = Block(transactions=[], prev_hash="")
    w = ProofOfWork(new_block, user)
    genesis_block = w.mine()
    blockchain.add_block(genesis_block)
    # 返回创世区块
    return blockchain


# 用户之间进行交易并记入交易列表
def add_transaction(sender, recipient, amount):
    # 新建交易
    new_transaction = Transaction(
        sender=sender.address,
        recipient=recipient.address,
        amount=amount
    )
    # 生成数字签名
    sig = sender.sign(str(new_transaction))
    # 传入付款方的公钥和签名
    new_transaction.set_sign(sig, sender.pubkey)
    return new_transaction


# 验证交易,若验证成功则加入交易列表
def verify_new_transaction(new_transaction, transactions):
    if verify_sign(new_transaction.pubkey,
                   str(new_transaction),
                   new_transaction.signature
                   ):
        # 验证交易签名没问题,加入交易列表
        print("交易验证成功")
        transactions.append(new_transaction)
    else:
        print("交易验证失败")


# 矿工将全部验证成功的交易列表打包出块
def generate_block(miner, transactions, blockchain):
    new_block = Block(transactions=transactions,
                      prev_hash=blockchain.blocks[len(blockchain.blocks) - 1].hash)
    print("生成新的区块...")
    # 挖矿
    w = ProofOfWork(new_block, miner)
    block = w.mine()
    print("将新区块添加到区块链中")
    blockchain.add_block(block)

进行测试

# 新建交易列表
transactions = []

# 创建 3 个用户
alice = Wallet()
tom = Wallet()
bob = Wallet()

print("alice创建创世区块...")
blockchain = generate_genesis_block(alice)
print()

print(f"alice 的余额为{get_balance(alice, blockchain)}个比特币")
print(f"tom 的余额为{get_balance(tom, blockchain)}个比特币")
print(f"bob 的余额为{get_balance(bob, blockchain)}个比特币")
print()

# 打印区块链信息
blockchain.print_list()

print("新增交易:alice 转账 0.5 比特币给 tom")
nt = add_transaction(alice, tom, 0.5)
print()
verify_new_transaction(nt, transactions)
print(f"矿工 bob 将全部验证成功的交易列表打包出块...")
generate_block(bob, transactions, blockchain)
print("添加完成\n")

# 打印区块链信息
blockchain.print_list()

测试结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/210449.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

简单搭建Python开发环境

Python环境安装 Python官网: Welcome to Python.org 1. 选择Python3.x版本下载,建议使用稳定版3.9.13(Stable Releases),绝大数库对3.9版本Python已良好支持,但对3.10及以上支持不完全: https://www.…

华清远见嵌入式学习——C++——作业4

作业要求&#xff1a; 代码&#xff1a; #include <iostream>using namespace std;class Stu {friend const Stu operator*(const Stu &L,const Stu &R);friend bool operator<(const Stu &L,const Stu &R);friend Stu operator-(Stu &L,const S…

Git 简介及异常场景处理

一、简介 介绍Git之前&#xff0c;还得先介绍下 版本控制系统&#xff08;VCS&#xff09;&#xff0c; 和它的发展历史 纵观版本控制系统的发展历史&#xff0c;广义上讲&#xff0c;版本控制工具的历史可以分为三代&#xff1a; 第一代 第一代版本控制系统被称为本地版本控…

C语言结构体详解(一)(能看懂文字就能明白系列)

&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;个人主页&#xff1a; 古德猫宁- &#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;…

Gateway跨域解决可copy配置代码

globalcors: # 全局跨域处理配置add-to-simple-url-handler-mapping: true # 解决options请求被拦截的问题cors-configurations:[/**]:allowed-origins:- "http://localhost:8090"- "http://www.qvfan.com"allowedMethods:- "GET"- "POST&q…

C++相关闲碎记录(3)

1、reference wrapper 例如声明如下的模板&#xff1a; template <typename T> void foo(T val); 如果调用使用&#xff1a; int x; foo(std::ref(x)); T变成int&&#xff0c;而使用调用 int x; foo(std::cref(x)); T变成const int&。 这个特性被C标准库用…

【每日一题】1094. 拼车-2023.12.2

题目&#xff1a; 1094. 拼车 车上最初有 capacity 个空座位。车 只能 向一个方向行驶&#xff08;也就是说&#xff0c;不允许掉头或改变方向&#xff09; 给定整数 capacity 和一个数组 trips , trip[i] [numPassengersi, fromi, toi] 表示第 i 次旅行有 numPassengersi…

vue中中的动画组件使用及如何在vue中使用animate.css

“< Transition >” 是一个内置组件&#xff0c;这意味着它在任意别的组件中都可以被使用&#xff0c;无需注册。它可以将进入和离开动画应用到通过默认插槽传递给它的元素或组件上。进入或离开可以由以下的条件之一触发&#xff1a; 由 v-if 所触发的切换由 v-show 所触…

@2023 中国家居家具行业数字化转型分析与案例解读|商派徐礼昭

作者&#xff1a;徐礼昭&#xff08;商派市场负责人&#xff0c;重构零售实验室负责人&#xff09; 中国的家居家具行业面临着市场竞争激烈、消费者需求多变等诸多挑战。为了应对这些挑战&#xff0c;许多品牌企业开始探索数字化转型的道路&#xff0c;以提升竞争力并满足消费…

非应届生简历模板13篇

无论您是职场新人还是转行求职者&#xff0c;一份出色的简历都是获得心仪岗位的关键。本文为大家精选了13篇专业的非应届生简历模板&#xff0c;无论您的经验如何&#xff0c;都可以灵活参考借鉴&#xff0c;提升自己的简历质量。让简历脱颖而出&#xff0c;轻松斩获心仪职位&a…

np.array无法直接用matplotlib画图,因为需要借用np.squeeze先转化

文章目录 前言一、使用步骤1.没使用np.squeeze转化2.使用np.squeeze转化 前言 实际工作中&#xff0c;时而难免会遇见np.array无法直接用matplotlib画图的情况&#xff0c;这个时候&#xff0c;是因为在画图之前少了一个步骤&#xff0c;需要先借用np.squeeze先转化 一、使用步…

ES通过抽样agg聚合性能提升3-5倍

一直以来&#xff0c;es的agg聚合分析性能都比较差&#xff08;对应sql的 group by&#xff09;。特别是在超多数据中做聚合&#xff0c;在搜索的条件命中特别多结果的情况下&#xff0c;聚合分析会非常非常的慢。 一个聚合条件&#xff1a;聚合分析请求的时间 search time a…

【算法】Rabin-Karp 算法

目录 1.概述2.代码实现3.应用 更多数据结构与算法的相关知识可以查看数据结构与算法这一专栏。 有关字符串模式匹配的其它算法&#xff1a; 【算法】Brute-Force 算法 【算法】KMP 算法 1.概述 &#xff08;1&#xff09;Rabin-Karp 算法是由 Richard M. Karp 和 Michael O. R…

免费采集工具推荐,好文章值得收藏

采集工具的作用 在互联网的海洋中&#xff0c;有许多强大的免费采集工具&#xff0c;它们为用户提供了便捷、高效的方式&#xff0c;帮助用户从各种网站中收集、整理所需的信息。这些工具不仅广泛应用于市场研究、竞争情报等商业领域&#xff0c;同时也服务于学术研究、个人兴…

虚函数表和虚函数在内存中的位置

文章目录 结论验证 结论 虚函数表指针是虚函数表所在位置的地址。虚函数表指针属于对象实例。因而通过new出来的对象的虚函数表指针位于堆&#xff0c;声名对象的虚函数表指针位于栈 虚函数表位于只读数据段&#xff08;.rodata&#xff09;&#xff0c;即&#xff1a;C内存模…

量子测量-技术点杂录

目录: 高质量文章导航-持续更新中_GZVIMMY的博客-CSDN博客 前置:量子测量设备 电子显微镜:电子显微镜可以在非常高分辨率下观察生物组织、细胞和分子结构。通过调整电子束的强度和聚焦来观察细胞内部的微小结构。但是,电子显微镜需要对样品进行切片处理,而且在真空中进行…

配置中心--Spring Cloud Config

目录 概述 环境说明 步骤 创建远端git仓库 准备配置文件 配置中心--服务端 配置中心--客户端 配置中心的高可用 配置中心--服务端 配置中心--客户端 消息总线刷新配置 配置中心--服务端 配置中心--客户端 概述 因为微服务架构有很多个服务&#xff0c;手动一个一…

Xilinx FPGA平台DDR3设计详解(二):DDR SDRAM组成与工作过程

本文主要介绍一下DDR SDRAM的基本组成以及工作过程&#xff0c;方便大家更好的理解和掌握DDR的控制与读写。 一、DDR SDRAM的基本组成 1、SDRAM的基本单元 SDRAM的基本单元是一个CMOS晶体管和一个电容组成的电路。 晶体管最上面的一端&#xff0c;称作栅极&#xff0c;通过…

css实现简单的抽奖动画效果和旋转效果,还有春联效果

使用css的animation和transform和transition可以实现简单的图片放大缩小&#xff0c;旋转&#xff0c;位移的效果&#xff0c;由此可以延伸的动画效果还是挺多的&#xff0c;比如图片慢慢放大&#xff0c;图片慢慢旋转并放大&#xff0c;图片慢慢变化位置等等&#xff0c; 抽奖…

mall电商项目(学习记录2)

运行mall-admin Java项目 需要安装Redis&#xff0c;需要安装mysql&#xff0c;同时需要运行其项目提供的mall.sql 运行mall-admin后端程序 安装完Redis、mysql、HeidiSQL&#xff08;用于执行mall.sql&#xff0c;界面化操作高效直观&#xff09;、IntelliJ IDEA 运行mall-…