深度学习毕设项目 深度学习 python opencv 动物识别与检测

文章目录

  • 0 前言
  • 1 深度学习实现动物识别与检测
  • 2 卷积神经网络
    • 2.1卷积层
    • 2.2 池化层
    • 2.3 激活函数
    • 2.4 全连接层
    • 2.5 使用tensorflow中keras模块实现卷积神经网络
  • 3 YOLOV5
    • 3.1 网络架构图
    • 3.2 输入端
    • 3.3 基准网络
    • 3.4 Neck网络
    • 3.5 Head输出层
  • 4 数据集准备
    • 4.1 数据标注简介
    • 4.2 数据保存
  • 5 模型训练
    • 5.1 修改数据配置文件
    • 5.2 修改模型配置文件
    • 5.3 开始训练模型
  • 6 实现效果
    • 6.1图片效果
    • 6.2 视频效果
    • 6.3 摄像头实时效果
  • 7 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 基于深度学习的动物识别算法研究与实现

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分


1 深度学习实现动物识别与检测

学长实现的动态检测效果,精度还是非常高的!
在这里插入图片描述


2 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。

在这里插入图片描述

2.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。

在这里插入图片描述

2.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。

在这里插入图片描述

2.3 激活函数

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

2.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

2.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            filters=32,             # 卷积层神经元(卷积核)数目
            kernel_size=[5, 5],     # 感受野大小
            padding='same',         # padding策略(vaild 或 same)
            activation=tf.nn.relu   # 激活函数
        )
        self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.conv2 = tf.keras.layers.Conv2D(
            filters=64,
            kernel_size=[5, 5],
            padding='same',
            activation=tf.nn.relu
        )
        self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))
        self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]
        x = self.pool1(x)                       # [batch_size, 14, 14, 32]
        x = self.conv2(x)                       # [batch_size, 14, 14, 64]
        x = self.pool2(x)                       # [batch_size, 7, 7, 64]
        x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]
        x = self.dense1(x)                      # [batch_size, 1024]
        x = self.dense2(x)                      # [batch_size, 10]
        output = tf.nn.softmax(x)
        return output

3 YOLOV5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO 一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

3.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

3.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

3.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

3.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

3.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):
        stride = None  # strides computed during build
        onnx_dynamic = False  # ONNX export parameter
    
        def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
            super().__init__()
            self.nc = nc  # number of classes
            self.no = nc + 5  # number of outputs per anchor
            self.nl = len(anchors)  # number of detection layers
            self.na = len(anchors[0]) // 2  # number of anchors
            self.grid = [torch.zeros(1)] * self.nl  # init grid
            self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
            self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
            self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
            self.inplace = inplace  # use in-place ops (e.g. slice assignment)
    
        def forward(self, x):
            z = []  # inference output
            for i in range(self.nl):
                x[i] = self.m[i](x[i])  # conv
                bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
                x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
    
                if not self.training:  # inference
                    if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                        self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
    
                    y = x[i].sigmoid()
                    if self.inplace:
                        y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                        y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                        xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                        wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                        y = torch.cat((xy, wh, y[..., 4:]), -1)
                    z.append(y.view(bs, -1, self.no))
    
            return x if self.training else (torch.cat(z, 1), x)
    
        def _make_grid(self, nx=20, ny=20, i=0):
            d = self.anchors[i].device
            if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
                yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
            else:
                yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
            grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
            anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
                .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
            return grid, anchor_grid
    

4 数据集准备

由于目前针对多源场景下的火焰数据并没有现成的数据集,我们使用使用Python爬虫利用关键字在互联网上获得的图片数据,爬取数据包含室内场景下的火焰、写字楼和房屋燃烧、森林火灾和车辆燃烧等场景下的火焰图片。经过筛选后留下3000张质量较好的图片制作成VOC格式的实验数据集。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

4.1 数据标注简介

通过pip指令即可安装

pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

在这里插入图片描述

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

在这里插入图片描述

4.2 数据保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

5 模型训练

预训练模型和数据集都准备好了,就可以开始训练自己的yolov5目标检测模型了,训练目标检测模型需要修改两个yaml文件中的参数。一个是data目录下的相应的yaml文件,一个是model目录文件下的相应的yaml文件。

5.1 修改数据配置文件

修改data目录下的相应的yaml文件。找到目录下的voc.yaml文件,将该文件复制一份,将复制的文件重命名,最好和项目相关,这样方便后面操作。我这里修改为animal_data.yaml。

在这里插入图片描述

打开这个文件夹修改其中的参数,需要检测的类别数,这里识别有6种动物,所以这里填写6;最后填写需要识别的类别的名字(必须是英文,否则会乱码识别不出来)。到这里和data目录下的yaml文件就修改好了。

在这里插入图片描述

5.2 修改模型配置文件

由于该项目使用的是yolov5s.pt这个预训练权重,所以要使用models目录下的yolov5s.yaml文件中的相应参数(因为不同的预训练权重对应着不同的网络层数,所以用错预训练权重会报错)。同上修改data目录下的yaml文件一样,我们最好将yolov5s.yaml文件复制一份,然后将其重命名

打开yolov5s.yaml文件,主要是进去后修改nc这个参数来进行类别的修改,修改如图中的数字就好了,这里是识别两个类别。

在这里插入图片描述

至此,相应的配置参数就修改好了。

目前支持的模型种类如下所示:

在这里插入图片描述

5.3 开始训练模型

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述


6 实现效果

我们实现了图片检测,视频检测和摄像头实时检测接口,用Pyqt自制了简单UI

#部分代码
from PyQt5 import QtCore, QtGui, QtWidgets


class Ui_Win_animal(object):
    def setupUi(self, Win_animal):
        Win_animal.setObjectName("Win_animal")
        Win_animal.resize(1107, 868)
        Win_animal.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n"
"ui.pushButton->setStyleSheet(qstrStylesheet);")
        self.frame = QtWidgets.QFrame(Win_animal)
        self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))
        self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)
        self.frame.setFrameShadow(QtWidgets.QFrame.Raised)
        self.frame.setObjectName("frame")
        self.pushButton = QtWidgets.QPushButton(self.frame)
        self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))
        font = QtGui.QFont()
        font.setBold(True)
        font.setUnderline(True)
        font.setWeight(75)
        self.pushButton.setFont(font)
        self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
        self.pushButton.setObjectName("pushButton")
        self.pushButton_2 = QtWidgets.QPushButton(self.frame)
        self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))
        font = QtGui.QFont()
        font.setBold(True)
        font.setUnderline(True)
        font.setWeight(75)
        self.pushButton_2.setFont(font)
        self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
        self.pushButton_2.setObjectName("pushButton_2")
        self.pushButton_3 = QtWidgets.QPushButton(self.frame)
        self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))
        QtCore.QMetaObject.connectSlotsByName(Win_animal)

6.1图片效果

在这里插入图片描述

6.2 视频效果

在这里插入图片描述


6.3 摄像头实时效果

在这里插入图片描述


7 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/202586.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从0开始学习JavaScript--JavaScript 模板字符串的全面应用

JavaScript 模板字符串是 ES6 引入的一项强大特性,它提供了一种更优雅、更灵活的字符串拼接方式。在本文中,将深入探讨模板字符串的基本语法、高级用法以及在实际项目中的广泛应用,通过丰富的示例代码带你领略模板字符串的魅力。 模板字符串…

MySQL InnoDB Cluster

MySQL InnoDB Cluster 一、InnoDB Cluster 基本概述 MySQL InnoDB Cluster 为 MySQL 提供了一个完整的高可用解决方案。通过使用 MySQL Shell 提供的 AdminAPI,你可以轻松地配置和管理一组至少由3个MySQL服务器实例组成的 InnoDB 集群。 InnoDB 集群中的每个 MySQL 服务器实例…

IDEA专栏—重装IDEA的配置

文章目录 1、maven路径2、默认文件路径3、插件4、导包顺序5、快捷键6、调整配置插件 1、maven路径 2、默认文件路径 3、插件 4、导包顺序 import static all other imports <blank line> import java.* import javax.* <blank line> import all other imports <…

基于Java SSM框架实现KTV点歌系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架实现KTV点歌系统演示 摘要 本论文主要论述了如何使用JAVA语言开发一个KTV点歌系统&#xff0c;本系统将严格按照软件开发流程进行各个阶段的工作&#xff0c;采用B/S架构&#xff0c;面向对象编程思想进行项目开发。在引言中&#xff0c;作者将论述KTV点歌系…

手动创建映像及在OpenStack云计算平台的镜像应用

目录 一、下载 rhel7.6 安装ISO 二、在VMware 的虚拟机内创建虚拟机 三、更改一些设置 1、使用httpd暴露&#xff08;在外部虚拟机&#xff09; 2、添加软件仓库 3、 安装 ACPI 服务 4、使用 cloud-init 获取公钥 5、安装 cloud-utils-growpart 以允许调整分区大小 6、…

面试:说一下深拷贝,浅拷贝,引用拷贝吧;Object类中的clone是哪种呢?

目录 深拷贝、浅拷贝、引用拷贝Object类的clone()方法 深拷贝、浅拷贝、引用拷贝 ● 浅拷贝&#xff1a; 对基本数据类型进行值传递&#xff1b; 对引用类型&#xff0c;复制了一份引用类型的变量 里面存储的内存地址一样 指向的对象也一样。 ● 深拷贝&#xff1a;对基本数据…

postgres在docker中使用

记录个人开发过程中postgres在docker中的使用&#xff0c;以便后续查看。 Dockerfile 个人是在M1电脑上开发&#xff0c;所以platform使用linux/amd64来兼容amd芯片。 FROM --platformlinux/amd64 postgres:16.1-alpine COPY ./poetrydb.sql /docker-entrypoint-initdb.d/po…

Java多线程核心技术一-基础篇synchronzied同步语句块

接上篇&#xff1a;Java多线程核心技术二-synchronzied同步方法 1 概述 用synchronzied关键字声明方法在某些情况下是有弊端的&#xff0c;比如A线程调用同步方法执行一个长时间的任务&#xff0c;那么B现成就要等待比较长的时间&#xff0c;此时可以使用synchronzied同步语句…

nexus 制品库管理

目录 一、nexus 介绍 二、nexus 支持的仓库 三、nexus 部署 四、nexus 数据备份 五、创建一个内网yum源 六、创建一个代理yum仓库 七、jenkins 使用 nexus插件 7.1 jenkins 安装插件 7.2 配置 maven 工程 7.3 查看构建和上传 一、nexus 介绍 Nexus 是一个强大的仓库管…

Linux创建与编辑视图

本博客将会详细讲解如何在Linux中如何编辑配置文件 输出重定向 对于一台设备而言&#xff0c;存在着两种设备&#xff0c;分别负责输入与输出&#xff1a; 显示器&#xff08;输出设备>&#xff09; 与 键盘&#xff08;输入设备<&#xff09; 对于Linux系统而言&#…

存储过程与触发器的练习题

1&#xff0e;实验目的 掌握使用SQL Server管理平台和Transact-SQL语句创建存储过程、执行存储过程、修改存储过程、删除存储过程的用法。理解使用SQL Server管理平台和Transact-SQL语句查看存储过程定义、重命名存储过程的用法。掌握通过SQL Server管理平台和Transact-SQL语句…

【古月居《ros入门21讲》学习笔记】18_常用可视化工具的使用

目录 说明&#xff1a; 1. Qt工具箱 日志输出工具&#xff1a;rqt_console 绘制数据曲线&#xff1a;rqt_plot 图像渲染工具&#xff1a;rqt_image_view 综合工具&#xff1a;rqt 2. 三维可视化工具&#xff1a;Rviz Rviz启动 使用示例 3. 仿真平台&#xff1a;Gazebo…

通用plantuml模板头

通用plantuml文件 startuml participant Admin order 0 #87CEFA // 参与者、顺序、颜色 participant Student order 1 #87CEFA participant Teacher order 2 #87CEFA participant TestPlayer order 3 #87CEFA participant Class order 4 #87CEFA participant Subject order …

004:Direct 2D离屏渲染(Qt中实现)

简介&#xff1a; 用QT开发图像显示的小程序&#xff0c;需要一些标注工具&#xff0c;由于用的是opengl渲染&#xff0c;所以就在内存中进行绘制&#xff0c;然后纹理贴图贴出去&#xff0c;发现Qt绘制的效果太差&#xff0c;且速度一般&#xff0c;于是就想着用direct2d来绘制…

MySQL根据binlog恢复数据

简介 本文介绍了使用mysqlbinlog导出数据&#xff0c;根据binlog恢复数据&#xff0c;和导出数据时报需要super权限的解决方法。 环境 MySQL: 5.7.40 说明 MySQL的binlog是数据库服务器在运行过程中产生的日志文件&#xff0c;记录了数据库增删改的操作&#xff0c;可用于恢复和…

leetcode二叉树

下面的两个题呢是比较类似的所以放在一起讲&#xff0c;更好的理解起来。 https://leetcode.cn/problems/same-tree/description/ 这个题就是比较两颗树是不是一样的&#xff0c;这个其实看起来就只要比较当前节点&#xff0c;我们分析成子问题就是判断两颗树当前节点是不是一致…

Java实现动态加载的逻辑

日常工作中我们经常遇到这样的场景&#xff0c;某某些逻辑特别不稳定&#xff0c;随时根据线上实际情况做调整&#xff0c;比如商品里的评分逻辑&#xff0c;比如规则引擎里的规则。 常见的可选方案有: JDK自带的ScriptEngine 使用groovy&#xff0c;如GroovyClassLoader、Gro…

《尚品甄选》:后台系统——分类品牌和规格管理(debug一遍)

文章目录 一、分类品牌管理1.1 表结构介绍1.2 列表查询1.3 添加功能1.4 修改功能1.5 删除功能 二、商品规格管理2.1 表结构介绍2.2 列表查询2.3 添加功能2.4 修改功能2.5 删除功能 一、分类品牌管理 分类品牌管理就是将分类的数据和品牌的数据进行关联&#xff0c;分类数据和品…

48、Flink DataStream API 编程指南(1)- DataStream 入门示例

Flink 系列文章 1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接 13、Flink 的table api与sql的基本概念、通用api介绍及入门示例 14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性 15、Flink 的ta…

Web安全漏洞分析-XSS(中)

随着互联网的迅猛发展&#xff0c;Web应用的普及程度也愈发广泛。然而&#xff0c;随之而来的是各种安全威胁的不断涌现&#xff0c;其中最为常见而危险的之一就是跨站脚本攻击&#xff08;Cross-Site Scripting&#xff0c;简称XSS&#xff09;。XSS攻击一直以来都是Web安全领…