策略算法与Actor-Critic网络

策略算法

教程链接

DataWhale强化学习课程JoyRL

https://johnjim0816.com/joyrl-book/#/ch7/main

策略梯度

与前面的基于价值的算法不同,这类算法直接对策略本身进行近似优化。

在这种情况下,我们可以将策略描述成一个带有参数 θ θ θ的连续函数,该函数将某个状态作为输入,输出的不再是某个确定性的离散动作,而是对应的动作概率分布,通常用 π θ ( a ∣ s ) \pi_{θ}(a|s) πθ(as) 表示,称作随机性策略。

价值算法缺点

  • 无法表示连续动作

由于 DQN 等算法是通过学习状态和动作的价值函数来间接指导策略的,因此它们只能处理离散动作空间的问题,无法表示连续动作空间的问题

  • 高方差

基于价值的方法通常都是通过采样的方式来估计价值函数,这样会导致估计的方差很高,从而影响算法的收敛性。尽管一些 DQN 改进算法,通过改善经验回放、目标网络等方式,可以在一定程度上减小方差,但是这些方法并不能完全解决这个问题。

  • 探索与利用的平衡问题

DQN 等算法在实现时通常选择贪心的确定性策略,而很多问题的最优策略是随机策略,即需要以不同的概率选择不同的动作。虽然可以通过 ϵ -greedy \epsilon\text{-greedy} ϵ-greedy 策略等方式来实现一定程度的随机策略,但是实际上这种方式并不是很理想,因为它并不能很好地平衡探索与利用的关系。

策略梯度算法

特点: 直接对策略进行优化算法,但是优化目标与基于价值一样,都是累积的价值期望 V ∗ ( s ) V^{*}(s) V(s)

轨迹产生的概率:

P θ ( τ ) = p ( s 0 ) π θ ( a 0 ∣ s 0 ) p ( s 1 ∣ s 0 , a 0 ) π θ ( a 1 ∣ s 1 ) p ( s 2 ∣ s 1 , a 1 ) ⋯ = p ( s 0 ) ∏ t = 0 T π θ ( a t ∣ s t ) p ( s t + 1 ∣ s t , a t ) (9.2) \tag{9.2} \begin{aligned} P_{\theta}(\tau) &=p(s_{0}) \pi_{\theta}(a_{0} | s_{0}) p(s_{1} | s_{0}, a_{0}) \pi_{\theta}(a_{1} | s_{1}) p(s_{2} | s_{1}, a_{1}) \cdots \\ &=p(s_{0}) \prod_{t=0}^{T} \pi_{\theta}\left(a_{t} | s_{t}\right) p\left(s_{t+1} | s_{t}, a_{t}\right) \end{aligned} Pθ(τ)=p(s0)πθ(a0s0)p(s1s0,a0)πθ(a1s1)p(s2s1,a1)=p(s0)t=0Tπθ(atst)p(st+1st,at)(9.2)

基于全期望公式得到价值的期望公式

J ( π θ ) = E τ ∼ π θ [ R ( τ ) ] = P θ ( τ 1 ) R ( τ 1 ) + P θ ( τ 2 ) R ( τ 2 ) + ⋯ = ∫ τ P θ ( τ ) R ( τ ) = E τ ∼ P θ ( τ ) [ ∑ t r ( s t , a t ) ] (9.3) \tag{9.3} \begin{aligned} J(\pi_{\theta}) = \underset{\tau \sim \pi_\theta}{E}[R(\tau)] & = P_{\theta}(\tau_{1})R(\tau_{1})+P_{\theta}(\tau_{2})R(\tau_{2})+\cdots \\ &=\int_\tau P_{\theta}(\tau) R(\tau) \\ &=E_{\tau \sim P_\theta(\tau)}[\sum_t r(s_t, a_t)] \end{aligned} J(πθ)=τπθE[R(τ)]=Pθ(τ1)R(τ1)+Pθ(τ2)R(τ2)+=τPθ(τ)R(τ)=EτPθ(τ)[tr(st,at)](9.3)

由于 R ( τ ) R(\tau) R(τ)与参数 θ \theta θ无关,一来问题就稍稍简化成了如何求解 P θ ( τ ) P_{\theta}(\tau) Pθ(τ) 的梯度了

后进行一系列推导

∇ θ P θ ( τ ) = P θ ( τ ) ∇ θ P θ ( τ ) P θ ( τ ) = P θ ( τ ) ∇ θ log ⁡ P θ ( τ ) (9.4) \tag{9.4} \nabla_\theta P_{\theta}(\tau)= P_{\theta}(\tau) \frac{\nabla_\theta P_{\theta}(\tau)}{P_{\theta}(\tau) }= P_{\theta}(\tau) \nabla_\theta \log P_{\theta}(\tau) θPθ(τ)=Pθ(τ)Pθ(τ)θPθ(τ)=Pθ(τ)θlogPθ(τ)(9.4)

log ⁡ P θ ( τ ) = log ⁡ p ( s 0 ) + ∑ t = 0 T ( log ⁡ π θ ( a t ∣ s t ) + log ⁡ p ( s t + 1 ∣ s t , a t ) ) (9.5) \tag{9.5} \log P_{\theta}(\tau)= \log p(s_{0}) + \sum_{t=0}^T(\log \pi_{\theta}(a_t \mid s_t)+\log p(s_{t+1} \mid s_t,a_t)) logPθ(τ)=logp(s0)+t=0T(logπθ(atst)+logp(st+1st,at))(9.5)

∇ θ log ⁡ P θ ( τ ) = ∇ θ log ⁡ ρ 0 ( s 0 ) + ∑ t = 0 T ( ∇ θ log ⁡ π θ ( a t ∣ s t ) + ∇ θ log ⁡ p ( s t + 1 ∣ s t , a t ) ) = 0 + ∑ t = 0 T ( ∇ θ log ⁡ π θ ( a t ∣ s t ) + 0 ) = ∑ t = 0 T ∇ θ log ⁡ π θ ( a t ∣ s t ) (9.6) \tag{9.6} \begin{aligned} \nabla_\theta \log P_{\theta}(\tau) &=\nabla_\theta \log \rho_0\left(s_0\right)+\sum_{t=0}^T\left(\nabla_\theta \log \pi_\theta\left(a_t \mid s_t\right)+\nabla_\theta \log p\left(s_{t+1} \mid s_t, a_t\right)\right) \\ &=0+\sum_{t=0}^T\left(\nabla_\theta \log \pi_\theta\left(a_t \mid s_t\right)+0\right) \\ &=\sum_{t=0}^T \nabla_\theta \log \pi_\theta\left(a_t \mid s_t\right) \end{aligned} θlogPθ(τ)=θlogρ0(s0)+t=0T(θlogπθ(atst)+θlogp(st+1st,at))=0+t=0T(θlogπθ(atst)+0)=t=0Tθlogπθ(atst)(9.6)

得到目标函数的梯度

∇ θ J ( π θ ) = ∇ θ E τ ∼ π θ [ R ( τ ) ] = ∇ θ ∫ τ P θ ( τ ) R ( τ ) = ∫ τ ∇ θ P θ ( τ ) R ( τ ) = ∫ τ P θ ( τ ) ∇ θ log ⁡ P θ ( τ ) R ( τ ) = E τ ∼ π θ [ ∇ θ log ⁡ P θ ( τ ) R ( τ ) ] = E τ ∼ π θ [ ∑ t = 0 T ∇ θ log ⁡ π θ ( a t ∣ s t ) R ( τ ) ] (9.7) \tag{9.7} \begin{aligned} \nabla_\theta J\left(\pi_\theta\right) &=\nabla_\theta \underset{\tau \sim \pi_\theta}{\mathrm{E}}[R(\tau)] \\ &=\nabla_\theta \int_\tau P_{\theta}(\tau) R(\tau) \\ &=\int_\tau \nabla_\theta P_{\theta}(\tau) R(\tau) \\ &=\int_\tau P_{\theta}(\tau) \nabla_\theta \log P_{\theta}(\tau) R(\tau) \\ &=\underset{\tau \sim \pi_\theta}{\mathrm{E}}\left[\nabla_\theta \log P_{\theta}(\tau) R(\tau)\right]\\ &= \underset{\tau \sim \pi_\theta}{\mathrm{E}}\left[\sum_{t=0}^T \nabla_\theta \log \pi_\theta\left(a_t \mid s_t\right) R(\tau)\right] \end{aligned} θJ(πθ)=θτπθE[R(τ)]=θτPθ(τ)R(τ)=τθPθ(τ)R(τ)=τPθ(τ)θlogPθ(τ)R(τ)=τπθE[θlogPθ(τ)R(τ)]=τπθE[t=0Tθlogπθ(atst)R(τ)](9.7)

蒙特卡洛策略梯度算法

由于环境的初始状态为随机的,智能体的每次采样动作也是随机的,从而导致每条轨迹可能不一样。考虑采样数量足够多的轨迹,然后利用这些轨迹的平均值来近似求解目标函数的梯度。

∇ J θ ≈ 1 N ∑ n = 1 N ∑ t = 1 T n G t n ∇ log ⁡ π θ ( a t n ∣ s t n ) (9.8) \tag{9.8} \nabla J_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} G_{t}^{n} \nabla \log \pi_{\theta}\left(a_{t}^{n} \mid s_{t}^{n}\right) JθN1n=1Nt=1TnGtnlogπθ(atnstn)(9.8)

这里我们假定目标是使每回合的累积价值最大。

但是实际每回合的累积奖励或回报会受到很多因素的影响。后引入优势量来进行评估价值。

作业题

  1. 基于价值和基于策略的算法各有什么优缺点?

基于价值的算法的优点包括:

  • 可以收敛到全局最优策略,而不是局部最优。

  • 可以利用贪心策略或者epsilon-greedy策略来平衡探索和利用。

  • 可以用于离散或者连续的状态空间。

基于价值的算法的缺点包括:

  • 对于高维或者连续的动作空间,难以找到最优的动作。
  • 需要存储和更新一个大的值函数表格或者近似函数,计算量较大。
  • 不能很好地处理随机策略。

策略梯度算法优点:

  • 适配连续动作空间。在将策略函数设计的时候我们已经展开过,这里不再赘述。
  • 适配随机策略。由于策略梯度算法是基于策略函数的,因此可以适配随机策略,而基于价值的算法则需要一个确定的策略。此外其计算出来的策略梯度是无偏的,而基于价值的算法则是有偏的。

策略梯度算法缺点

  • 采样效率低。由于使用的是蒙特卡洛估计,与基于价值算法的时序差分估计相比其采样速度必然是要慢很多的,这个问题在前面相关章节中也提到过。
  • 高方差。虽然跟基于价值的算法一样都会导致高方差,但是策略梯度算法通常是在估计梯度时蒙特卡洛采样引起的高方差,这样的方差甚至比基于价值的算法还要高。
  • 收敛性差。容易陷入局部最优,策略梯度方法并不保证全局最优解,因为它们可能会陷入局部最优点。策略空间可能非常复杂,存在多个局部最优点,因此算法可能会在局部最优点附近停滞。
  • 难以处理高维离散动作空间:对于离散动作空间,采样的效率可能会受到限制,因为对每个动作的采样都需要计算一次策略。当动作空间非常大时,这可能会导致计算成本的急剧增加。
  1. 马尔可夫平稳分布需要满足什么条件?
  • 非周期性:由于马尔可夫链需要收敛,那么就一定不能是周期性的,实际上我们处理的问题基本上都是非周期性的,这点不需要做过多的考虑。
  • 状态连通性:即存在概率转移矩阵P,能够使得任意状态S0经过有限次转移到达状态s,反之亦然。
  1. REINFORCE 算法会比 Q-learning 算法训练速度更快吗?为什么?

是的。REINFORCE 算法直接优化一个参数化的策略函数,而不需要估计一个值函数.Q-learning 算法是一种基于价值的算法,它通过学习一个状态-动作值函数来评估不同动作的优劣,然后根据这个函数来选择最优的动作。

  1. 确定性策略与随机性策略的区别?
  • 确定性策略是指在每个状态下,只选择一个固定的动作,不考虑其他可能的动作。确定性策略可以用一个函数来表示,即 a = μ ( s ) a = \mu(s) a=μ(s) ,其中 a 是动作,s 是状态, μ \mu μ是策略函数。
  • 随机性策略是指在每个状态下,按照一定的概率分布来选择动作,而不是唯一确定的。随机性策略可以用一个条件概率来表示,即 π ( a ∣ s ) \pi(a|s) π(as),其中 π \pi π是策略函数,表示在状态 s 下选择动作 a 的概率。

随机性策略可以更好地探索环境,避免陷入局部最优,而确定性策略可以更高效地利用已知的信息,减少计算量。

Actor-Ctitic算法

策略梯度算法优缺点:

  • 适配连续动作空间。在将策略函数设计的时候我们已经展开过,这里不再赘述。
  • 适配随机策略。由于策略梯度算法是基于策略函数的,因此可以适配随机策略,而基于价值的算法则需要一个确定的策略。此外其计算出来的策略梯度是无偏的,而基于价值的算法则是有偏的。

但同样的,策略梯度算法也有其缺点。

  • 采样效率低。由于使用的是蒙特卡洛估计,与基于价值算法的时序差分估计相比其采样速度必然是要慢很多的,这个问题在前面相关章节中也提到过。
  • 高方差。虽然跟基于价值的算法一样都会导致高方差,但是策略梯度算法通常是在估计梯度时蒙特卡洛采样引起的高方差,这样的方差甚至比基于价值的算法还要高。
  • 收敛性差。容易陷入局部最优,策略梯度方法并不保证全局最优解,因为它们可能会陷入局部最优点。策略空间可能非常复杂,存在多个局部最优点,因此算法可能会在局部最优点附近停滞。
  • 难以处理高维离散动作空间:对于离散动作空间,采样的效率可能会受到限制,因为对每个动作的采样都需要计算一次策略。当动作空间非常大时,这可能会导致计算成本的急剧增加。

结合策略梯度与值函数的Actor-Critic算法能够同时兼顾两者的优点,甚至还能缓解两种方法都很难解决的高方差问题。

策略梯度算法高方差来源为 直接对策略参数化,相当于既要利用策略与环境进行交互采样,又要利用采样去估计策略梯度。

价值函数算法高方差来源为 需要与环境交互采样来估计值函数。

而两者结合后,Actor网络部分还是负责估计策略梯度和采样,但是Critic网络 也就是原来的值函数部分就不需要采样只负责估计值函数,并且由于它估计的值函数为策略函数的只,相当于带来了一个更稳定的估计用于指导Actor的更新,反而能够缓解策略梯度估计带来的高方差。

img

由于AC网络并不能彻底解决策略梯度算法的高方差问题,所以为了进一步缓解高方差问题,引入了一个优势函数,用来表示当前状态-动作对相当于平均水平的优势

KaTeX parse error: \tag works only in display equations

这里优势函数相当于减去了一个基线,可以自由选择,但是通常选择状态价值函数使得梯度估计更加稳定。即A2C算法。而A3C算法是在A2C基础上引入了多线程的概念提高训练效率。原先的 A2C 算法相当于只有一个全局网络并持续与环境交互更新。而 A3C 算法中增加了多个进程,每一个进程都拥有一个独立的网络和环境以供交互,并且每个进程每隔一段时间都会将自己的参数同步到全局网络中,这样就能提高训练效率。

img

作业题

  1. 相比于 REINFORCE 算法, A2C 主要的改进点在哪里,为什么能提高速度?

A2C引入了优势函数与AC演员评论家网络。A2C 算法是一种演员-评论家算法,它引入了一个值函数作为评论家,可以在每一步或者每几步就根据优势函数来更新策略和值函数。可以衡量一个动作相对于平均水平的优劣。这些改进使得 A2C 算法能够更快地收敛到最优策略,提高了训练的速度和效果。

  1. A2C 算法是 on-policy 的吗?为什么?

什么能提高速度?

A2C引入了优势函数与AC演员评论家网络。A2C 算法是一种演员-评论家算法,它引入了一个值函数作为评论家,可以在每一步或者每几步就根据优势函数来更新策略和值函数。可以衡量一个动作相对于平均水平的优劣。这些改进使得 A2C 算法能够更快地收敛到最优策略,提高了训练的速度和效果。

  1. A2C 算法是 on-policy 的吗?为什么?

是的。 A2C 算法的目标是最大化累积回报的期望,而这个期望是基于当前的策略分布的,如果使用不同的策略分布来采样数据,那么就会导致偏差和不一致。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/193605.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java小游戏之【王者荣耀】

首先创建一个新的Java项目命名为“王者荣耀”,并在src下创建两个包分别命名为“com.sxt"、”com.stx.beast",在相应的包中创建所需的类。 代码 package com.sxt;import javax.swing.*; import java.awt.*;public class Background extends GameObject {p…

Qt_一个由单例引发的崩溃

Qt_一个由单例引发的崩溃 文章目录 Qt_一个由单例引发的崩溃摘要关于 Q_GLOBAL_STATIC代码测试布局管理器源码分析Demo 验证关于布局管理器析构Qt 类声明周期探索更新代码获取父类分析Qt 单例宏源码 关键字: Qt、 Q_GLOBAL_STATIC、 单例、 UI、 崩溃 摘要 今…

深入解析:Peft Adapter与LLM融合

在增量预训练阶段或有监督微调阶段使用高效微调方法(Lora)时会产生adapter文件,相当于是一个“补丁”。那么如何将“补丁”与原始模型合并呢? 下面将对模型合并代码进行解读。 相关代码将全部上传到github: https://github.com/hjandlm/LLM_Train 欢迎关注公众号 代码…

HarmonyOS应用开发者基础认证【题库答案】

HarmonyOS应用开发者高级认证【题库答案】 一、判断 首选项preferences是以Key-Value形式存储数据,其中Key是可以重复。(错)使用http模块发起网络请求时,必须要使用on(‘headersReceive’)订阅请求头,请…

PHP 双门双向门禁控制板实时监控源码

本示例使用设备&#xff1a; 实时网络双门双向门禁控制板可二次编程控制网络继电器远程开关-淘宝网 (taobao.com) <?PHPheader("content-type:text/html;charsetGBK");$ThisIpget_local_ip(); //获取电脑IP地址 $server udp://.$ThisIp.:39192; $sock…

每天一道算法题:51. N 皇后

难度 困难 题目 按照国际象棋的规则&#xff0c;皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上&#xff0c;并且使皇后彼此之间不能相互攻击。 给你一个整数 n &#xff0c;返回所有不同的 n_ _皇后问题 的…

FPGA模块——AD高速转换模块(并行输出转换的数据)

FPGA模块——AD高速转换模块&#xff08;并行输出转换的数据&#xff09; &#xff08;1&#xff09;AD9280/3PA9280芯片&#xff08;2&#xff09;代码 &#xff08;1&#xff09;AD9280/3PA9280芯片 AD9280/3PA9280芯片的引脚功能&#xff1a; 工作电压2.7到5.5v 数据对应&a…

代码随想录算法训练营第五十七天|739. 每日温度、496.下一个更大元素 I

LeetCode 739. 每日温度 题目链接&#xff1a;739. 每日温度 - 力扣&#xff08;LeetCode&#xff09; 单调栈开始&#xff0c;为什么要用栈&#xff0c;因为栈是先入后出&#xff0c;当我们遍历从前往后的时候&#xff0c;每次遍历的元素都是添加至栈尾&#xff0c;方便我们进…

西南科技大学电路分析基础实验A1(一阶电路的设计)

目录 一、实验目的 二、实验设备 三、预习内容(如:基本原理、电路图、计算值等) 四、实验数据及结果分析(预习写必要实验步骤和表格) 1. 观测一阶电

搜索百度可以直接生成代码拉

先看效果图&#xff1a; 使用示例&#xff1a; 比如我要搜索“JS取一个数在两个数更近”的方法&#xff0c;直接搜“JS取一个数在两个数更近”&#xff0c;点击百度一下&#xff0c;就会出现想要的代码&#xff0c;如上图。

《金融科技行业2023年专利分析白皮书》发布——科技变革金融,专利助力行业发展

金融是国民经济的血脉&#xff0c;是国家核心竞争力的重要组成部分&#xff0c;金融高质量发展成为2023年中央金融工作的重要议题。《中国金融科技调查报告》中指出&#xff0c;我国金融服务业在科技的助力下&#xff0c;从1.0时代的“信息科技金融”、2.0时代的“互联网金融”…

坚鹏:数字金融——金融行业的数字科技和智能化转型培训圆满结束

中国邮政储蓄银行拥有优良的资产质量和显著的成长潜力&#xff0c;是中国领先的大型零售银行。2016年9月在香港联交所挂牌上市&#xff0c;2019年12月在上交所挂牌上市。中国邮政储蓄银行拥有近4万个营业网点&#xff0c;服务个人客户超6.5亿户。2022年&#xff0c;在《银行家》…

力扣hot100 滑动窗口最大值 单调队列

&#x1f468;‍&#x1f3eb; 题目地址 &#x1f37b; AC code class Solution {public int[] maxSlidingWindow(int[] nums, int k){int n nums.length;int[] res new int[n - k 1]; // 单调递减队列int[] q new int[n];// q数组维护的是元素在 nums 数组对应的下标int…

从零构建属于自己的GPT系列1:预处理模块(逐行代码解读)、文本tokenizer化

1 训练数据 在本任务的训练数据中&#xff0c;我选择了金庸的15本小说&#xff0c;全部都是txt文件 数据打开后的样子 数据预处理需要做的事情就是使用huggingface的transformers包的tokenizer模块&#xff0c;将文本转化为token 最后生成的文件就是train_novel.pkl文件&a…

动态网页从数据库取信息,然后展示。

把数据库的驱动放在bin目录下。 通过servlet 读取数据库的内容&#xff0c;生成session,然后跨页面传给展示页。 package src;import java.io.IOException; import java.io.PrintWriter; import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSe…

sprintf函数

1.头文件&#xff1a;#include <stdio.h> 2.函数原型&#xff1a;int sprintf ( char * str, const char * format, ... ) 3.函数功能&#xff1a;将数据格式化为字符串&#xff0c;再写入到字符串中 4.参数分析&#xff1a; str&#xff1a;是字符串指针&#xff0c…

SpringBoot——国际化

优质博文&#xff1a;IT-BLOG-CN 一、Spring 编写国际化时的步骤 【1】编写国际化配置文件&#xff1b; 【2】使用ResourceBundleMessageSource管理国际化资源文件&#xff1b; 【3】在页面使用ftp:message取出国际化内容&#xff1b; 二、SpringBoot编写国际化步骤 【1】创…

JavaScript WebApi(二) 详解

监听事件 介绍 事件监听是一种用于在特定条件下执行代码的编程技术。在Web开发中&#xff0c;事件监听器可以用于捕获和响应用户与页面交互的各种操作&#xff0c;如点击、滚动、输入等。 事件监听的基本原理是&#xff0c;通过在特定元素上注册事件监听器&#xff0c;当事件…

每日一题:LeetCode-202.快乐数(一点都不快乐)

每日一题系列&#xff08;day 06&#xff09; 前言&#xff1a; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f50e…

【古诗生成AI实战】之三——任务加载器与预处理器

本章内容属于数据处理阶段&#xff0c;将分别介绍任务加载器task和预处理器processor。 [1] 数据集 在深入探讨数据处理的具体步骤之前&#xff0c;让我们先了解一下我们将要使用的数据集的形式。 本项目采用的是七绝数据集&#xff0c;总计83072条古诗&#xff0c;其形式如下&…