前言:Hello大家好,我是小哥谈。解耦头是目标检测中的一种头部设计,用于从检测网络的特征图中提取目标位置和类别信息。具体来说,解耦头部将目标检测任务分解为两个子任务:分类和回归。分类任务用于预测目标的类别,回归任务用于预测目标的位置。这种设计可以提高目标检测的准确性和效率。🌈
前期回顾:
YOLOv5算法进阶改进(1)— 改进数据增强方式 + 添加CBAM注意力机制
前言:Hello大家好,我是小哥谈。解耦头是目标检测中的一种头部设计,用于从检测网络的特征图中提取目标位置和类别信息。具体来说,解耦头部将目标检测任务分解为两个子任务:分类和回归。分类任务用于预测目标的类别,回归任务用于预测目标的位置。这种设计可以提高目标检测的准确性和效率。🌈
前期回顾:
YOLOv5算法进阶改进(1)— 改进数据增强方式 + 添加CBAM注意力机制
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/190887.html
如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!