基于战争策略算法优化概率神经网络PNN的分类预测 - 附代码

基于战争策略算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于战争策略算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于战争策略优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用战争策略算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于战争策略优化的PNN网络

战争策略算法原理请参考:https://blog.csdn.net/u011835903/article/details/126599876

利用战争策略算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

战争策略参数设置如下:

%% 战争策略参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,战争策略-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/186355.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

uniapp视频倍速播放插件,uniapp视频试看插件——sunny-video使用文档

sunny-video视频倍速播放器 组件名:sunny-video 效果图 img1img2img3img4 平台差异说明 目前已应用到APP(安卓、iOS)、微信(小程序、H5)其它平台未测试 安装方式 本组件符合easycom规范,HBuilderX 2.5…

网络安全—自学

1.网络安全是什么 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 2.网络安全市场 一、是市场需求量高; 二、则是发展相对成熟…

LangChain 9 模型Model I/O 聊天提示词ChatPromptTemplate, 少量样本提示词FewShotPrompt

LangChain系列文章 LangChain 实现给动物取名字,LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索I…

【XSLVGL2.0】如何新增一种语言和词条

XSLVGL2.0 开发手册 【XSLVGL2.0】如何新增一种语言和词条 1、概述2、以外置资源的方式增加词条3、以内置资源的方式增加词条4、使用方法1、概述 本文件旨在介绍新增一种语言词条的方法 2、以外置资源的方式增加词条 假设项目需要增加一种英文的词条。一般地,我们采用国际…

关闭vscode打开的本地服务器端口

vscode开了本地的一个端口“8443”当本地服务器端口,然后随手把VScode一关,后来继续做发现8443端口已经被占用了。   原来,即便关闭了编译器VScode,服务器依然是被node.exe运行着的。那这个端口怎么才能关掉呢?   …

浅析linux中的信号

人们往往将信号称为“软件中断”,它提供了异步事件的处理机制,这些事件可以来自系统外部(如用户按下ctrlc产生中断符),也可能来自程序或者内核内部的执行动作(如进程除零操作)。进程收到信号&am…

CSS:浏览器设置placeholder样式 / 微信小程序设置placeholder样式

一、web 设置placeholder 设置浏览器的placeholder样式 ::-webkit-input-placeholder { /* WebKit browsers */color: #999; } :-moz-placeholder { /* Mozilla Firefox 4 to 18 */color: #999; } ::-moz-placeholder { /* Mozilla Firefox 19 */color: #999; } :-ms-input-p…

学习视频剪辑方法:AI智剪助力,批量处理短视频无忧

随着短视频的兴起,越来越多的人开始关注如何有效地制作和发布这些内容。但是,短视频的制作并不容易,要耗费大量的时间和精力。现在有很多AI智能剪辑工具可以快速、高效地制作短视频。其中,AI智剪是一款非常受欢迎的视频剪辑功能&a…

【Linux】fork()

文章目录 一、fork()是什么?二、fork()干了什么?三、fork()怎么用? 一、fork()是什么? fork()函数其实是在Linux系统中用于创建一个新的进程。让我们看看Linux中是怎么描述的?运行man fork。 RETURN VALUE On success…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《基于外部性理论的网侧储能成本疏导机制研究》

这个标题涉及到一个关于储能的研究,主要聚焦在基于外部性理论的网侧(电网侧)储能成本疏导机制上。 基于外部性理论: 这表明研究的框架或者理论基础是"外部性理论"。外部性是指某个经济活动的影响不仅限于直接参与者&…

golang学习笔记——接口和继承比较2

接口和继承 现在有一个需要要求大学生和足球运动员掌握英语技能,请问怎么实现? 给运动员和学生结构体添加studyEnglish方法显示是可以的,但是篮球动员和中学生也学习了英语,显示不行。这时,我们可以直接给足球运动员和大学生添加…

WebSocket 鉴权策略与技巧详解

WebSocket 作为实时通信的利器,越来越受到开发者的青睐。然而,为了确保通信的安全性和合法性,鉴权成为不可或缺的一环。本文将深入探讨 WebSocket 的鉴权机制,为你呈现一揽子的解决方案,确保你的 WebSocket 通信得心应…

鼠标拖拽问题,不选中文本不触发单击事件

文章目录 1. 为什么鼠标单击的时候触发了mousemove事件?明明鼠标没有移动2. 鼠标拖拽元素怎么能不触发单击事件?怎么处理鼠标在元素内的相对定位,而不是每次定位到左上角?方式一:拖拽的元素没有注册click监听就不会触发…

Python报错:AttributeError(类属性、实例属性)

Python报错:AttributeError(类属性、实例属性) Python报错:AttributeError 这个错误就是说python找不到对应的对象的属性,百度后才发现竟然是初始化类的时候函数名写错了 __init__应该有2条下划线,如果只有…

北邮22级信通院数电:Verilog-FPGA(11)第十一周实验(2)设计一个24秒倒计时器

北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章,请访问专栏: 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 目录 一.代码部分 1.1 counter_24.v 1.2 divid…

【深度学习】CNN中pooling层的作用

1、pooling是在卷积网络(CNN)中一般在卷积层(conv)之后使用的特征提取层,使用pooling技术将卷积层后得到的小邻域内的特征点整合得到新的特征。一方面防止无用参数增加时间复杂度,一方面增加了特征的整合度…

2、用命令行编译Qt程序生成可执行文件exe

一、创建源文件 1、新建一个文件夹&#xff0c;并创建一个txt文件 2、重命名为main.cpp 3、在main.cpp中添加如下代码 #include <QApplication> #include <QDialog> #include <QLabel> int main(int argc, char *argv[]) { QApplication a(argc, argv); QDi…

在Spring Boot中实现单文件,多文件上传

这篇文章算是一篇水文&#xff0c;因为也没啥好讲的&#xff0c;在Spring Boot中&#xff0c;上传文件是我们常常做的&#xff0c;包括我们在实际开发过程中&#xff0c;我们也经常碰到与文件上传有关的功能&#xff0c;这也算是我们常用的一个功能了&#xff0c;毕竟作为开发者…

分布式数据恢复-hbase+hive分布式存储误删除如何恢复数据?

hbasehive分布式存储数据恢复环境&#xff1a; 16台某品牌R730XD服务器节点&#xff0c;每台物理服务器节点上有数台虚拟机&#xff0c;虚拟机上配置的分布式&#xff0c;上层部署hbase数据库hive数据仓库。 hbasehive分布式存储故障&初检&#xff1a; 数据库文件被误删除…