北邮22级信通院数电:Verilog-FPGA(11)第十一周实验(2)设计一个24秒倒计时器

北邮22信通一枚~

跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章

持续关注作者 迎接数电实验学习~

获取更多文章,请访问专栏:

北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客

目录

一.代码部分

1.1  counter_24.v

1.2  divide.v

1.3  debounce.v

二.管脚分配

三.实验效果


一.代码部分

1.1  counter_24.v

module counter_24
(
	input clk,rst,hold,
	output [8:0] seg_led_1,
	output [8:0] seg_led_2,
	output reg [7:0] led
);

	wire clk_lh;
	wire hold_pulse;
	reg hold_flag;
	reg back_to_zero_flag;
	reg [6:0] seg [16:0];
	reg [3:0] cnt_ge;
	reg [3:0] cnt_shi;
	
	initial
		begin 
			seg[0] = 7'h3f;
			seg[1] = 7'h06;
			seg[2] = 7'h5b;
			seg[3] = 7'h4f;
			seg[4] = 7'h66;
			seg[5] = 7'h6d;
			seg[6] = 7'h7d;
			seg[7] = 7'h07;
			seg[8] = 7'h7f;
			seg[9] = 7'h6f;
			seg[10] = 7'hf7;
			seg[11] = 7'h7c;
			seg[12] = 7'h39;
			seg[13] = 7'h5e;
			seg[14] = 7'h79;
			seg[15] = 7'h71;
		end
	debounce debounce_1
	(
		.clk(clk),
		.rst(rst),
		.key(hold),
		.key_pulse(hold_pulse)
	);
	
	divide # (.WIDTH(32),.N(12000000)) divide_1
	(
		.clk(clk),
		.rst_n(rst),
		.clkout(clk_lh)
	);
	
	always @ (posedge hold_pulse)
		if(!rst==1)
			hold_flag <= 0;
		else 
			hold_flag <= ~hold_flag;
	always @ (*)
		if(!rst==1)
			back_to_zero_flag <= 0;
		else if( cnt_shi==0 && cnt_ge==0)
			back_to_zero_flag <= 1;
		else 
			back_to_zero_flag <= 0;
			
	always @ (posedge clk_lh or negedge rst)
		begin 
			if(!rst==1)
				begin 
					cnt_ge <= 4'd4;
					cnt_shi <=4'd2;
				end
			else if(hold_flag==1)
				begin 
					cnt_ge <= cnt_ge;
					cnt_shi <= cnt_shi;
				end
			else if(cnt_shi==0 && cnt_ge==0)
				begin 
					cnt_shi <= cnt_shi;
					cnt_ge <=cnt_ge;
				end
			else if(cnt_ge==0)
				begin 
					cnt_ge <=4'd9;
					cnt_shi <= cnt_shi-1;
				end
			else 
				begin cnt_ge <= cnt_ge-1; end
		end
	//计时完成点亮led
	always @ (back_to_zero_flag)
		begin 
			if(back_to_zero_flag == 1)
				led = 8'b0;
			else
				led = 8'b1111_1111;
		end
	
	assign seg_led_1[8:0] = {2'b00,seg[cnt_ge]};
	assign seg_led_2[8:0] = {2'b00,seg[cnt_shi]};

endmodule
				
		

1.2  divide.v

module divide (	clk,rst_n,clkout);
 
        input 	clk,rst_n;                       //输入信号,其中clk连接到FPGA的C1脚,频率为12MHz
        output	clkout;                          //输出信号,可以连接到LED观察分频的时钟
 
        //parameter是verilog里常数语句
	parameter	WIDTH	= 3;             //计数器的位数,计数的最大值为 2**WIDTH-1
	parameter	N	= 5;             //分频系数,请确保 N < 2**WIDTH-1,否则计数会溢出
 
	reg 	[WIDTH-1:0]	cnt_p,cnt_n;     //cnt_p为上升沿触发时的计数器,cnt_n为下降沿触发时的计数器
	reg			clk_p,clk_n;     //clk_p为上升沿触发时分频时钟,clk_n为下降沿触发时分频时钟
 
	//上升沿触发时计数器的控制
	always @ (posedge clk or negedge rst_n )         //posedge和negedge是verilog表示信号上升沿和下降沿
                                                         //当clk上升沿来临或者rst_n变低的时候执行一次always里的语句
		begin
			if(!rst_n)
				cnt_p<=0;
			else if (cnt_p==(N-1))
				cnt_p<=0;
			else cnt_p<=cnt_p+1;             //计数器一直计数,当计数到N-1的时候清零,这是一个模N的计数器
		end
 
         //上升沿触发的分频时钟输出,如果N为奇数得到的时钟占空比不是50%;如果N为偶数得到的时钟占空比为50%
         always @ (posedge clk or negedge rst_n)
		begin
			if(!rst_n)
				clk_p<=0;
			else if (cnt_p<(N>>1))          //N>>1表示右移一位,相当于除以2去掉余数
				clk_p<=0;
			else 
				clk_p<=1;               //得到的分频时钟正周期比负周期多一个clk时钟
		end
 
        //下降沿触发时计数器的控制        	
	always @ (negedge clk or negedge rst_n)
		begin
			if(!rst_n)
				cnt_n<=0;
			else if (cnt_n==(N-1))
				cnt_n<=0;
			else cnt_n<=cnt_n+1;
		end
 
        //下降沿触发的分频时钟输出,和clk_p相差半个时钟
	always @ (negedge clk)
		begin
			if(!rst_n)
				clk_n<=0;
			else if (cnt_n<(N>>1))  
				clk_n<=0;
			else 
				clk_n<=1;                //得到的分频时钟正周期比负周期多一个clk时钟
		end
 
        assign clkout = (N==1)?clk:(N[0])?(clk_p&clk_n):clk_p;      //条件判断表达式
                                                                    //当N=1时,直接输出clk
                                                                    //当N为偶数也就是N的最低位为0,N(0)=0,输出clk_p
                                                                    //当N为奇数也就是N最低位为1,N(0)=1,输出clk_p&clk_n。正周期多所以是相与
endmodule     

1.3  debounce.v

module debounce (clk,rst,key,key_pulse);
 
        parameter       N  =  1;         //要消除的按键的数量
 
	input             clk;
        input             rst;
        input 	[N-1:0]   key;          //输入的按键					
	output  [N-1:0]   key_pulse;        //按键动作产生的脉冲	
 
        reg     [N-1:0]   key_rst_pre;  //定义一个寄存器型变量存储上一个触发时的按键值
        reg     [N-1:0]   key_rst;      //定义一个寄存器变量储存储当前时刻触发的按键值
 
        wire    [N-1:0]   key_edge;      //检测到按键由高到低变化是产生一个高脉冲
 
        //利用非阻塞赋值特点,将两个时钟触发时按键状态存储在两个寄存器变量中
        always @(posedge clk  or  negedge rst)
          begin
             if (!rst) begin
                 key_rst <= {N{1'b1}}; //初始化时给key_rst赋值全为1,{}中表示N个1
                 key_rst_pre <= {N{1'b1}};
             end
             else begin
                 key_rst <= key;       //第一个时钟上升沿触发之后key的值赋给key_rst,
                                       //同时key_rst的值赋给key_rst_pre
                 key_rst_pre <= key_rst;    //非阻塞赋值。
                                            //相当于经过两个时钟触发,
                                            //key_rst存储的是当前时刻key的值,
                                            //key_rst_pre存储的是前一个时钟的key的值
             end    
           end
 
        assign  key_edge = key_rst_pre & (~key_rst);//脉冲边沿检测。
                                                    //当key检测到下降沿时,
                                                    //key_edge产生一个时钟周期的高电平
 
        reg	[17:0]	  cnt;                       //产生延时所用的计数器,系统时钟12MHz,
                                                 //要延时20ms左右时间,至少需要18位计数器     
 
        //产生20ms延时,当检测到key_edge有效是计数器清零开始计数
        always @(posedge clk or negedge rst)
           begin
             if(!rst)
                cnt <= 18'h0;
             else if(key_edge)
                cnt <= 18'h0;
             else
                cnt <= cnt + 1'h1;
             end  
 
        reg     [N-1:0]   key_sec_pre;                //延时后检测电平寄存器变量
        reg     [N-1:0]   key_sec;                    
 
 
        //延时后检测key,如果按键状态变低产生一个时钟的高脉冲。如果按键状态是高的话说明按键无效
        always @(posedge clk  or  negedge rst)
          begin
             if (!rst) 
                 key_sec <= {N{1'b1}};                
             else if (cnt==18'h3ffff)
                 key_sec <= key;  
          end
       always @(posedge clk  or  negedge rst)
          begin
             if (!rst)
                 key_sec_pre <= {N{1'b1}};
             else                   
                 key_sec_pre <= key_sec;             
         end      
       assign  key_pulse = key_sec_pre & (~key_sec);     
 
endmodule

二.管脚分配

三.实验效果

数码管显示24秒倒计时,倒计时结束后所有LED灯亮起。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/186333.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【深度学习】CNN中pooling层的作用

1、pooling是在卷积网络&#xff08;CNN&#xff09;中一般在卷积层&#xff08;conv&#xff09;之后使用的特征提取层&#xff0c;使用pooling技术将卷积层后得到的小邻域内的特征点整合得到新的特征。一方面防止无用参数增加时间复杂度&#xff0c;一方面增加了特征的整合度…

2、用命令行编译Qt程序生成可执行文件exe

一、创建源文件 1、新建一个文件夹&#xff0c;并创建一个txt文件 2、重命名为main.cpp 3、在main.cpp中添加如下代码 #include <QApplication> #include <QDialog> #include <QLabel> int main(int argc, char *argv[]) { QApplication a(argc, argv); QDi…

在Spring Boot中实现单文件,多文件上传

这篇文章算是一篇水文&#xff0c;因为也没啥好讲的&#xff0c;在Spring Boot中&#xff0c;上传文件是我们常常做的&#xff0c;包括我们在实际开发过程中&#xff0c;我们也经常碰到与文件上传有关的功能&#xff0c;这也算是我们常用的一个功能了&#xff0c;毕竟作为开发者…

分布式数据恢复-hbase+hive分布式存储误删除如何恢复数据?

hbasehive分布式存储数据恢复环境&#xff1a; 16台某品牌R730XD服务器节点&#xff0c;每台物理服务器节点上有数台虚拟机&#xff0c;虚拟机上配置的分布式&#xff0c;上层部署hbase数据库hive数据仓库。 hbasehive分布式存储故障&初检&#xff1a; 数据库文件被误删除…

HarmonyOS应用开发实战—登录页面【ArkTS】

文章目录 本页面实战效果预览图一.HarmonyOS应用开发1.1HarmonyOS 详解1.2 ArkTS详解二.HarmonyOS应用开发实战—登录页面【ArkTS】2.1 ArkTS页面源码2.2 代码解析2.3 心得本页面实战效果预览图 一.HarmonyOS应用开发 1.1HarmonyOS 详解 HarmonyOS(鸿蒙操作系统)是华为公司…

【unity实战】基于权重的随机事件(附项目源码)

文章目录 前言开始一、简单的使用二、完善各种事件1. 完善生成金币事件2. 完善生成敌人事件敌人3. 完善生成药水事件 最终效果参考源码完结 前言 随机功能和UnityEvent前面其实我们都已经做过了&#xff0c;但是随机UnityEvent事件要怎么使用呢&#xff1f;这里就来举一个例子…

Vue3+element-plus,打包报错:Cannot read properties of null (reading ‘insertBefore‘)

一、现象&#xff1a;vue3 element-plus项目&#xff0c;本地启动时&#xff0c;页面所有操作都正常&#xff1b;部署到生产环境后&#xff0c;el-dialog、el-drawer弹框报错。 这个弹框报错问题&#xff0c;困扰好几天&#xff0c;查阅资料&#xff0c;可能是如下几个问题。 …

白嫖CTG4.0

大家好&#xff0c;到点了我来给各位大佬献策CTG&#xff0c;不是花钱买不起&#xff0c;而是免费更有性价比&#xff0c;哈哈哈不调侃了我们自此开始正文&#xff0c;咱们主打的就是一个分享是一种态度 当然我更希望大家支持国产对国产有自己的信心&#xff08;文心一言&…

鸿蒙4.0开发笔记之DevEco Studio如何使用低代码开发模板进行开发的详细流程(六)

鸿蒙低代码开发 一、什么是低代码二、如何进行鸿蒙低代码开发1、 创建低代码开发工程&#xff08;方式壹&#xff09;2、已有工程则创建Visual文件&#xff08;方拾贰&#xff09; 三、低代码开发界面介绍四、低代码实现页面跳转五、低代码开发建议 一、什么是低代码 所谓低代码…

数据结构——单链表(Singly Linked List)

1.链表介绍 链表是一种物理储存上非连续、非顺序的存储结构。数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点&#xff08;链表中每一个元素称为结点&#xff09;组成&#xff0c;结点可以在运行时动态生成。 对于上图&#xff0c;每一个结点都是一个结…

C语言—指针和数组

写在前 一个指针变量指向某个普通变量&#xff0c;则指针变量就等于普通变量。 指针变量存放的是地址&#xff0c;普通变量存放的是数据。 int * p; int i5,j; p &i;此程序&#xff0c;*pi5&#xff0c;在所有出现 *p 或 i 的位置&#xff0c;两者都可以互相替换。 通过…

2023年亚太杯数学建模A题水果采摘机器人的图像识别功能(基于yolov5的苹果分割)

注&#xff1a;.题中附录并没有给出苹果的标签集&#xff0c;所以需要我们自己通过前4问得到训练的标签集&#xff0c;采用的是yolov5 7.0 版本&#xff0c;该版本带分割功能 一&#xff1a;关于数据集的制作&#xff1a; clc; close all; clear; %-----这个是生成yolov5 数据…

2、git进阶操作

2、git进阶操作 2.1.1 分支的创建 命令参数含义git branch (git checkout -b)<new_branch> <old_branch>表示创建分支-d <-D>删除分支 –d如果分支没有合并&#xff0c;git会提醒&#xff0c;-D强制删除-a -v查看分支-m重新命名分支commit id从指定的commi…

【数据结构】树与二叉树(廿二):树和森林的遍历——后根遍历(递归算法PostOrder、非递归算法NPO)

文章目录 5.1 树的基本概念5.1.1 树的定义5.1.2 森林的定义5.1.3 树的术语 5.2 二叉树5.3 树5.3.1 树的存储结构1. 理论基础2. 典型实例3. Father链接结构4. 儿子链表链接结构5. 左儿子右兄弟链接结构 5.3.2 获取结点的算法5.3.3 树和森林的遍历1. 先根遍历&#xff08;递归、非…

XG916Ⅱ轮式装载机后驱动桥设计机械设计CAD

wx供重浩&#xff1a;创享日记 对话框发送&#xff1a;装载机 获取完整论文报告工程源文件 本次设计内容为XG916Ⅱ装载机后驱动桥设计&#xff0c;大致上分为主传动的设计&#xff0c;差速器的设计&#xff0c;半轴的设计&#xff0c;最终传动的设计四大部分。其中主传动锥齿轮…

【从删库到跑路】MySQL数据库 — E-R图 | 关系模型

&#x1f38a;专栏【MySQL】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【如愿】 大一同学小吉&#xff0c;欢迎并且感谢大家指出我的问题&#x1f970; 文章目录 &#x1f339;简述什么是E-R图⭐核心概念 &#x1f339;E-R图…

MTK联发科MT6762/MT6763/MT6765安卓核心板参数规格比较

MT6762安卓核心板 MTK6762安卓核心板是一款工业级高性能、可运行 android9.0 操作系统的 4G智能模块。 CPU&#xff1a;4xCortex-A53 up to 2.0Ghz/4xCortex-A53 up to 1.5GhzGraphics&#xff1a;IMG GE8320 Up to 650MhzProcess&#xff1a;12nmMemory&#xff1a;1xLP3 9…

Windows从源码构建tensorflow(离线编译)

由一开始的在线编译&#xff0c;到后面的离线编译&#xff0c;一路踩坑无数&#xff0c;历经整整6个半小时&#xff0c;终于编译成功&#xff01;在此记录一下参考过的文章&#xff0c;有时间整理一下踩坑记录。 一、环境配置 在tensorflow官网上有版本对应关系 win10 bazel …

只考数据结构,计算机评级C+,成都信息工程大学考情分析

成都信息工程大学(C) 考研难度&#xff08;☆☆&#xff09; 内容&#xff1a;23考情概况&#xff08;拟录取和复试分析&#xff09;、院校概况、24专业目录、23复试详情、各专业考情分析、各科目考情分析。 正文1715字&#xff0c;预计阅读&#xff1a;3分钟 2023考情概况 …

1、Docker概述与安装

相关资源网站&#xff1a; ● docker官网&#xff1a;http://www.docker.com ● Docker Hub仓库官网: https://hub.docker.com/ 注意&#xff0c;如果只是想看Docker的安装&#xff0c;可以直接往下拉跳转到Docker架构与安装章节下的Docker具体安装步骤&#xff0c;一步步带你安…