Antd Design的inputNumber实现千位分隔符和小数点并存

代码来自文章: react中使用antDesign的Input/InputNumber最多保留两位小数,多的小数位禁止输入,且实现输入实时校验并添加千位分隔符, 正则忘了很多, 我主要做个笔记.

//定义InputNumber的参数              
const NumberProps = {
    min: '0',//最小值
    max: '999999999999999.99',//最大值
    stringMode: true,//字符值模式,开启后支持高精度小数
    step: '0.01',//小数位数
    formatter: (value: any) => {//指定输入框展示值的格式
      const reg1 = `${value}`.replace(/^(\-)*(\d+)\.(\d\d).*$/, '$1$2.$3');
      return reg1.replace(/\B(?=(\d{3})+(?!\d))/g, ',');
      //如果不需要添加千位分隔符可以直接返回return reg1 
    },
  };
 
			//在InputNumber中使用NumberProps 
             <Col span={10}>
                <Form.Item
                  label="金额"
                  name="amount"
                  rules={[
                    {
                      required: true,
                      message: '请输入金额',
                    },
                  ]}
                >
                  <InputNumber {...NumberProps} style={{ width: '100%' }} />
                </Form.Item>
              </Col>

这里主要涉及到了两个正则表达式:

value.replace(/^(\-)*(\d+)\.(\d\d).*$/, '$1$2.$3');
value1.replace(/\B(?=(\d{3})+(?!\d))/g, ',');
  1. 第一个表达式的作用是: 保证在 inputNumber 的框中的数字, 小数点后只能保留两位, 第三位就输不进去了.

正则表达式详解:

  • ^ 行开头
  • $ 行结尾
  • 点号.可以匹配一个任意字符,仅1次。
  • 星号*可以复制它之前那个字符任意次数,包括0次,即[0, +∞]次。
  • + 表示0个以上个; + 号前面的字符必须至少出现一次(1次或多次), 即[1, +∞]次。
  • ? 表示0个或者1个
    例:colou?r 可以匹配 color 或者 colour,
    ? 问号代表前面的字符最多只可以出现一次(0次、或1次)。
value.replace(/^(\-)*(\d+)\.(\d\d).*$/, '$1$2.$3');

(\-)* 表示存在负数的情况, * 也可以是0次, 所以正负数都会被匹配进去。但是有个问题 , --121215644.061245这种数字也是满足匹配条件的, 所以可以改成 (\-)?, ? 表示0个或者1个 -, 避免特殊情况

(\d+) 表示匹配一个或多个数字

\.\ 是转义符, 意思是匹配.(小数点)

(\d\d).* 也是匹配数字, 不过这里匹配的是小数点后的数字, 有两个 \d 是因为小数点后保留两位小数(第三位是输不了的)

$1$2$3 是匹配符(占位符), 每个对应一个 () 分组.

这里原先有个疑问, 前面不是已经设置了 stringMode: true, step: '0.01' 开启了支持高精度小数的模式, 并且把精度设置为小数点后两位了吗, 为什么还要设置这个正则?

测试后发现, stringMode: true, step: '0.01' 并不能限制小数点后只保留两位,小数点后仍然可以输入任意位数的数字。这两句只能保证在点击右边的上下两个按钮时,小数点后的第二位发生变化。比如点击增加按钮,小数点后变成 .0912
在这里插入图片描述

  1. 第二个表达式的作用是: 使用千分符进行分隔. 这个正则表达式在antd示例中就已经给出了.
value1.replace(/\B(?=(\d{3})+(?!\d))/g, ',');

\b 是正则表达式规定的一个特殊代码(好吧,某些人叫它元字符,metacharacter),代表着单词的开头或结尾,也就是单词的分界处。虽然通常英文的单词是由空格,标点符号或者换行来分隔的,但是 \b 并不匹配这些单词分隔字符中的任何一个,它只匹配一个位置。

如果需要更精确的说法,\b 匹配这样的位置:它的前一个字符和后一个字符必须是\w (字母数字)和 \W (非字母数字),即匹配必须出现在 \w (字母数字)和 \W (非字母数字)字符之间的边界上。
\b属于匹配位置的元字符,一般作占位作用,而不被捕获,同属于匹配位置的还有匹配行起始位^和行结束位$

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/179236.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

druid keepAlive 导致数据库连接数飙升

一.背景 应用在执行完某个复杂业务&#xff0c;主要包含20几个查询SQL的操作后&#xff0c;会导致数据库连接池一直升高 druid版本&#xff1a;1.2.11 druid配置文件&#xff1a; spring.datasource.druid.maxActive100 spring.datasource.druid.initialSize20 spring.datas…

读像火箭科学家一样思考笔记06_初学者之心

1. 专业化是目前流行的趋势 1.1. 通才&#xff08;generalist&#xff09;是指博而不精之人 1.2. 懂得的手艺越多&#xff0c;反而会家徒四壁 1.2.1. 希腊谚语 1.3. 这种态度代价很大&#xff0c;它阻断了不同学科思想的交融 2. 组合游戏 2.1. 某个行业的变革可能始于另一…

ubuntu上编译proj-7.1.0出现tiffio.h找不到的错误

作者&#xff1a;朱金灿 来源&#xff1a;clever101的专栏 为什么大多数人学不会人工智能编程&#xff1f;>>> 在编译ubuntu上编译proj-7.1.0出现下面错误&#xff1a; grids.cpp:41:10: fatal error: tiffio.h: No such file or directory41 | #include "tif…

2023亚太杯数学建模B题思路 - 玻璃温室中的微气候法规

# 1 赛题 问题B 玻璃温室中的微气候法规 温室作物的产量受到各种气候因素的影响&#xff0c;包括温度、湿度和风速[1]。其中&#xff0c;适 宜的温度和风速是植物生长[2]的关键。为了调节玻璃温室内的温度、风速等气候因素 , 温室的设计通常采用带有温室风扇的通风系统&#x…

SAP_ABAP_面试篇_关于Function Module函数的三种处理类型

关于 Function Module 这个技术点&#xff0c;在面试过程中一般会考察以下几个问题&#xff1a; 1 函数处理类型的更新模式 一般会问到异步和事务&#xff08;逻辑单元 LUW&#xff09;&#xff0c;异步函数的调试方式、SM13监控更新函数的执行过程&#xff08;V1 与 V2 模式…

STM32_3(GPIO)

GPIO简介 GPIO&#xff08;General Purpose Input Output&#xff09;通用输入输出口8种输入输出模式输出模式可控制端口输出高电平&#xff0c;驱动LED、蜂鸣器、模拟通信协议输出时许等输入模式可读取端口的高低电平或电压&#xff0c;用于读取按键输入、外接模块电平信号输…

《数学之美》第三版的读书笔记一、主要是马尔可夫假设、隐马尔可夫模型、图论深度/广度、PageRank相关算法、TF-IDF词频算法

1、马尔可夫假设 从19世纪到20世纪初,俄国有个数学家叫马尔可夫他提出了一种方法,假设任意一个词出现的概率只同它前面的词有关。这种假设在数学上称为马尔可夫假设。 2、二元组的相对频度 利用条件概率的公式,某个句子出现的概率等于每一个词出现的条件概率相乘,于是可展…

STM32_5(中断)

中断系统 中断&#xff1a;在主程序运行过程中&#xff0c;出现了特定的中断触发条件&#xff08;中断源&#xff09;&#xff0c;使得CPU暂停当前正在运行的程序&#xff0c;转而去处理中断程序&#xff0c;处理完成后又返回原来被暂停的位置继续运行中断优先级&#xff1a;当…

计算公式-dB转换,噪声,IP3,OP1dB,耗散

1. dB和log转换公式 dB在缺省情况下总是定义功率单位&#xff0c;以 10lg 为计。 d B 10 l g ( B ) dB 10lg(B) dB10lg(B) P o w e r G a i n ( d B ) 10 l g ( P o u t P i n ) Power Gain(dB) 10lg(\frac{P_{out}}{P_{in}}) PowerGain(dB)10lg(Pin​Pout​​) 2. 级联情…

Django 集成 Celery 实现高效的异步任务处理

概要 在复杂的 Web 应用中&#xff0c;处理长时间运行的任务或定期任务是一项挑战。Django 作为一个强大的 Python Web 框架&#xff0c;可以通过集成 Celery 这一异步任务队列来优化这些任务的处理。Celery 不仅能提高应用性能&#xff0c;还能改善用户体验。本文将深入探讨如…

redis的高可用(主从复制和哨兵模式)

redis的高可用&#xff08;主从复制和哨兵模式&#xff09; redis的性能管理&#xff1a;redis的数据缓存在内存当中 INFO memory&#xff1a;查看redis内存使用情况 used_memory:1800800&#xff1a;redis中数据占用的内存 used_memory_rss:5783552&#xff1a;redis向操作…

【nlp】2.8 注意力机制拓展

注意力机制拓展 1 注意力机制原理1.1 注意力机制示意图1.2 Attention计算过程1.3 Attention计算逻辑1.4 有无attention模型对比1.4.1 无attention机制的模型1.4.2 有attention机制的模型1 注意力机制原理 1.1 注意力机制示意图 Attention机制的工作原理并不复杂,我们可以用下…

本地训练,开箱可用,Bert-VITS2 V2.0.2版本本地基于现有数据集训练(原神刻晴)

按照固有思维方式&#xff0c;深度学习的训练环节应该在云端&#xff0c;毕竟本地硬件条件有限。但事实上&#xff0c;在语音识别和自然语言处理层面&#xff0c;即使相对较少的数据量也可以训练出高性能的模型&#xff0c;对于预算有限的同学们来说&#xff0c;也没必要花冤枉…

文件的原理和应用

常识: 1 文件包括属性和内容 2 文件有打开和未打开文件&#xff0c; 3 本文先讨论谁打开的文件&#xff0c;以及如何管理已经打开的文件 一 回忆c接口 1 fopen 我们在test.c里面用一下fopen函数&#xff0c;不存在打开的文件会默认创建&#xff0c;那为什么默认新建在当前…

易点易动设备管理系统:提升企业设备维修效率的工具

在现代企业运营中&#xff0c;设备的正常运行和及时维修至关重要。然而&#xff0c;传统的设备维修管理方法往往效率低下、易出错&#xff0c;给企业带来了不小的困扰。为了解决这一问题&#xff0c;易点易动设备管理系统应运而生。作为一款先进的智能化系统&#xff0c;易点易…

c语言——俄罗斯方块

一、游戏效果 俄罗斯方块 二. 游戏背景 俄罗斯方块是久负盛名的游戏&#xff0c;它也和贪吃蛇&#xff0c;扫雷等游戏位列经典游戏的⾏列。 《俄罗斯方块》&#xff08;Tetris&#xff0c;俄文&#xff1a;Тетрис&#xff09;是一款由俄罗斯人阿列克谢帕基特诺夫于1984…

ChatGPT/GPT4丨编程助手;AI画图;数据分析;科研/项目实现;提示词工程技巧;论文写作等

ChatGPT 在论文写作与编程方面也具备强大的能力。无论是进行代码生成、错误调试还是解决编程难题&#xff0c;ChatGPT都能为您提供实用且高质量的建议和指导&#xff0c;提高编程效率和准确性。此外&#xff0c;ChatGPT是一位出色的合作伙伴&#xff0c;可以为您提供论文写作的…

lv11 嵌入式开发 FS4412开发环境搭建 8

目录 1 开发板硬件资源介绍 2 初始原理图 3 交叉开发环境搭建 3.1 在ubuntu下安装交叉编译工具链 3.2 在windows下安装SecureCRT 3.3 在windows下安装USB转串口驱动 3.4 下载测试程序 4 硬件控制原理 4.1 地址映射表 4.2 查看数据手册 1 开发板硬件资源介绍 …

关于sklearn的:还可能是网络的问题???

前提&#xff1a;安装sklearn需要 numpy、scipy等库&#xff08;这个自行搜索&#xff09; 昨天安装numpy、scipy很快&#xff0c;一会就好了&#xff0c;然后安装sklearn一直报错&#xff0c;还以为是版本问题。 今天大早上起来&#xff0c;再次安装&#xff0c;顺利成功&…

GPIO模式详解:推挽/开漏/浮空/上拉/下拉/施密特(迟滞)输入

GPIO(General Purpose Input Output)可用于执行数字输入或输出功能。典型的应用包括从/向模拟或数字传感器/设备读写数值、驱动LED、为I2C通信驱动时钟、生成外部组件的触发、发出中断等。 文章目录 1 GPIO简介2 输出模式2.1 推挽输出2.2 开漏输出 3 输入模式3.1 高阻态(浮空)、…