文心一言 VS 讯飞星火 VS chatgpt (140)-- 算法导论11.4 5题

五、用go语言,考虑一个装载因子为a的开放寻址散列表。找出一个非零的a值,使得一次不成功查找的探查期望数是一次成功查找的探查期望数的 2 倍。这两个探查期望数可以使用定理11.6 和定理 11.8 中给定的上界。

文心一言,代码正常运行:

在开放寻址法中,一次不成功的查找探查的期望次数可以由装载因子 a 计算。根据定理11.6,这是 1/(1-a)。对于一次成功的查找,其期望探查次数为 1。

我们需要找到一个 a 值,使得一次不成功查找的探查期望数是成功查找的探查期望数的两倍。因此,我们可以设置以下等式:

1/(1-a) = 2 * 1

解这个等式,我们可以得到 a 的值。

package main  
  
import "fmt"  
  
func main() {  
    // Solve for a in 1/(1-a) = 2 * 1  
    a := 1.0 / (2.0 - 1.0)  
    fmt.Printf("The value of a that satisfies the condition is: %.2f\n", a)  
``}

这段代码的输出应该是 a = 2,这就是我们需要的答案。

在这里插入图片描述

讯飞星火,代码正常运行:

首先,我们需要计算一次成功查找的探查期望数和一次不成功查找的探查期望数。根据定理11.6,我们可以得到以下公式:

一次成功查找的探查期望数 = 1 / (1 - a)

一次不成功查找的探查期望数 = 2 * 一次成功查找的探查期望数

接下来,我们需要找到一个非零的a值,使得一次不成功查找的探查期望数是一次成功查找的探查期望数的2倍。我们可以使用二分法来寻找这个a值。以下是Go语言代码实现:

package main

import (
	"fmt"
	"math"
)

func successProbability(a float64) float64 {
	return 1 / (1 - a)
}

func failureProbability(a float64) float64 {
	return 2 * successProbability(a)
}

func findA() float64 {
	left := 0.0001
	right := 0.5
	for math.Abs(right-left) > 1e-6 {
		mid := (left + right) / 2
		if failureProbability(mid) < successProbability(mid) {
			left = mid
		} else {
			right = mid
		}
	}
	return (left + right) / 2
}

func main() {
	a := findA()
	fmt.Printf("找到的a值为: %f
", a)
}

运行上述代码,我们可以找到满足条件的非零a值。

在这里插入图片描述

在这里插入图片描述

360智脑,代码不能运行:

要找到一个非零的a值,使得一次不成功查找的探查期望数是一次成功查找的探查期望数的 2 倍,可以使用以下代码:

package main
import (
    "fmt"
    "math/rand"
)

type OpenAddrHashTable struct {
    capacity int
    loadFactor float64
    table  int
}

func (o *OpenAddrHashTable) Init(capacity int, loadFactor float64) {
    o.capacity = capacity
    o.loadFactor = loadFactor
    o.table = make(OpenAddrHashTableBuckets, capacity)
    for i := range o.table {
        o.table[i] = make([]OpenAddrHashTableBucket, 0)
    }
}

func (o *OpenAddrHashTable) Put(key int) {
    index := o.hash(key)
    for _, k := range o.table[index] {
        if k == key {
            return
        }
    }
    o.table[index] = append(o.table[index], key)
}

func (o *OpenAddrHashTable) Get(key int) (int, bool) {
    index := o.hash(key)
    for _, k := range o.table[index] {
        if k == key {
            return k, true
        }
    }
    return 0, false
}

func (o *OpenAddrHashTable) hash(key int) int {
    hash := rand.Intn(o.capacity)
    return hash % o.capacity
}

type OpenAddrHashTableBuckets []OpenAddrHashTableBucket

func (o OpenAddrHashTableBuckets) Len() int {
    return len(o)
}

func (o OpenAddrHashTableBuckets) Less(i, j int) bool {
    return o[i].Get(0)[0] < o[j].Get(0)[0]
}

func (o OpenAddrHashTableBuckets) Swap(i, j int) {
    o[i], o[j] = o[j], o[i]
}

func main() {
    o := OpenAddrHashTable{}
    o.Init(10, 0.75)
    // ...
}

在代码中,我们使用了定理11.6 和定理 11.8 中给定的上界。其中,OpenAddrHashTableBuckets 是开放寻址散列表的buckets数组,OpenAddrHashTableBucket 是bucket中的元素。我们在初始化散列表时,需要确保每个bucket中存储的元素数量不超过其容量的一半。

在Put函数中,如果当前bucket中已经存在与key相等的元素,则直接返回,否则向bucket中添加新元素。

在Get函数中,如果当前bucket中已经存在与key相等的元素,则直接返回该元素和true;否则返回0和false。注意这里使用了定理 11.6 中给出的上界,即期望访问元素的次数不超过buckets数组长度的一半,因此需要在比较元素大小时使用小于符号。

在主函数中,我们初始化了一个OpenAddrHashTable对象,并调用了Init函数来设置散列表的容量和负载因子。然后,我们可以根据需要添加put和get函数以及其他操作。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

智谱清言:

首先,我们需要知道开放寻址散列表的探查期望次数公式:
E(h) = 1/p + (1/p + 1/p^2 + 1/p^3 + …)^(-1)
其中,p是散列表的大小,h是散列表的哈希函数。
根据定理11.6,一次成功查找的探查期望数为1/p。
现在,我们假设a是装载因子,即表中元素数量与表大小的比值。由于开放寻址散列表的装载因子不能超过1,所以我们知道a<1。
我们可以将一次不成功查找的探查期望数表示为E(h)2,根据题意,E(h)2 = 2 * 1/p。
我们将E(h)^2的公式代入散列表的探查期望次数公式中,得到:
2/p = 1/p + (1/p + 1/p^2 + 1/p^3 + …)^(-1) + (1/p + 1/p^2 + 1/p^3 + …)^(-1)
化简后得到:
1/p = (1/p + 1/p^2 + 1/p^3 + …)^(-1) * 2
两边同时取倒数,得到:
p = 2 + 1/p^2 + 1/p^3 + …
这是一个关于p的方程,我们可以通过迭代求解得到p的值。但是,由于p必须是一个整数,所以我们需要找到一个整数p,使得p满足上述方程。
通过尝试,我们可以发现p=4是一个满足条件的整数,因为:
4 = 2 + 1/4^2 + 1/4^3 + …
因此,当装载因子a=1/4时,一次不成功查找的探查期望数是一次成功查找的探查期望数的2倍。此时,散列表的探查期望次数为:
E(h) = 1/4 + (1/4 + 1/4^2 + 1/4^3 + …)^(-1)
这将带来更高的查找效率,因为相比于一次成功查找,一次不成功查找的代价更大。

在这里插入图片描述

通义千问:

在开放寻址散列中,如果哈希函数是随机的,并且负载因子是a,那么平均搜索长度(即一次查找的探查期望数)可以通过以下公式计算:

ASL = (1/(1-a)) * ln(1/a)

其中ln是自然对数。

因此,如果我们想要一次不成功的查找的探查期望数是一次成功查找的探查期望数的两倍,我们有:

(1/(1-b)) * ln(1/b) = 2 * (1/(1-a)) * ln(1/a)

我们可以将这个方程改写成:

b = 1 - exp(-2 * ln(1/a))

然后我们可以解出a:

a = 1 / exp((1-b)/2)

我们需要找到一个非零的a值来满足这个等式。我们可以从一个较小的a值开始(例如0.1),并逐步增加它,直到找到一个满足等式的a值。

在这里插入图片描述

天工:

根据定理 11.6,对于一个装载因子为 a 的开放寻址散列表,一次成功的查找所需的探查次数的期望值为:

E = 1 + (1/a) + (1/a^2) + …

根据定理 11.8,一次不成功的查找所需的探查次数的期望值为:

E’ = (1 - 1/a) + (1 - 1/a^2) + …

我们需要找到一个非零的 a 值,使得 E’ = 2E。

将 E 和 E’ 的公式代入上式,得到:

(1 - 1/a) + (1 - 1/a^2) + … = 2 * (1 + (1/a) + (1/a^2) + …)

化简得:

1 - 1/a + 1/a^2 - 1/a^3 + … = 1

这是一个等比数列求和的问题,我们可以使用求和公式:

S = a / (1 - r)

其中,S 是等比数列的和,a 是首项,r 是公比。对于本题,首项 a = 1,公比 r = 1/a。代入公式得:

1 / (1 - 1/a) = a

化简得:

a^2 - a + 1 = 0

使用求根公式解得:

a = (1 + sqrt(5)) / 2

因为 a 是一个装载因子,所以它的值应该在 0 和 1 之间。因此,我们可以选择 a = 0.618033988749895 作为一个合适的非零值。

验证一下,当 a = 0.618033988749895 时,E’ = 2E,即一次不成功的查找的期望次数是一次成功查找的期望次数的 2 倍。

在这里插入图片描述

灵小智:

首先,需要理解寻址散列表的基本概念。在寻址散列表中,每个键值对由一个或多个索引和一个值组成。在开放寻址散列表中,我们使用哈希函数将键映射到索引,但如果有多个键映射到同一个索引,我们需要通过额外的探查来确定键的值。

考虑一个装载因子为a的开放寻址散列表,假设哈希函数h将所有键映射到范围[0, a*n]的索引,其中n是散列表的大小。为了实现非零的a值使得一次不成功查找的探查期望数是成功查找期望数的两倍,我们可以采用以下策略:

首先,假设在理想情况下,所有键都成功地被哈希到不同的索引,此时探查期望数应该是每个可能的索引出现一次的概率,也就是(1/a)的n次方。但是实际情况下,可能会有一些冲突发生,也就是一些键被哈希到相同的索引。这时就需要进行额外的探查。

当哈希冲突发生时,我们有两个选择:1) 使用链地址法处理冲突,2) 执行一次额外的探查(即开放寻址法)。由于探查是随机的,所以我们不能控制它发生的概率。因此,为了满足你的要求,我们需要选择一个装载因子a的值,使得探查期望数E(m)与链表长度L(m)之和至少是成功查找期望数E(hit)的两倍。

定理11.6和定理11.8给出了探查期望数和链表长度的上界。这些定理指出,当装载因子a足够大时(具体地说,大约等于(log(n)+1)/log(1/d)),E(m)和L(m)之和与E(hit)大致相等。这里d是一个参数,通常被定义为冲突发生时每个额外查找成功的概率。这个概率通常取决于哈希函数的设计和冲突解决策略的选择。

因此,为了满足你的要求,我们可以选择a=d/(log(n)+1)。在这种情况下,一次不成功查找的探查期望数将是成功查找期望数的两倍。

注意:以上推理基于一些假设和简化,实际实现中可能需要进行一些调整和优化以适应特定的应用场景。此外,对于具体的编程语言如Go,你需要根据其语法和库来实现上述算法。

在这里插入图片描述

chatgpt:

要找到一个满足条件的装载因子a,我们需要根据定理11.6和定理11.8中给出的上界进行计算。这两个定理分别给出了一次成功查找和一次不成功查找的探查期望数的上界。

首先,我们回顾一下定理11.6和定理11.8:

  • 定理11.6:在开放寻址散列表中,一次成功查找的探查期望数最多为 (1 / (1 - a)) * ln(1 / (1 - a))。
  • 定理11.8:在开放寻址散列表中,一次不成功查找的探查期望数最多为 1 / (1 - a)。

我们要找到一个非零的a值,使得一次不成功查找的探查期望数是一次成功查找的探查期望数的2倍。即:

(1 / (1 - a)) <= 2 * ((1 / (1 - a)) * ln(1 / (1 - a)))

为了简化计算,我们可以假设ln(1 / (1 - a)) ≈ 0.5。这样我们可以将上述不等式转化为以下形式:

(1 / (1 - a)) <= 2 * ((0.5) * (1 / (1 - a)))

接下来,我们可以通过求解这个方程来得到满足条件的装载因子a:

(1 / (1 - a)) = 2 * ((0.5) * (1 / (1 - a)))

将等式两边乘以(1 - a)得到:

1 = 2 * 0.5 * (1 - a)

化简得到:

1 = (1 - a)

解方程可得:

a = 0

所以,当装载因子为零时,一次不成功查找的探查期望数是一次成功查找的探查期望数的2倍。

请注意,这个结果是在做了近似计算的基础上得出的。在实际应用中,我们通常会选择一个适当的装载因子来平衡存储空间和性能。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/174531.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

树与二叉树堆:树

目录 树&#xff1a; 树的概念&#xff1a; 树的相关概念&#xff1a; 1、结点的度&#xff1a; 2、叶节点&#xff1a;度为0的节点 3、非终端节点或分支节点&#xff1a; 4、父节点和子节点&#xff1a; 5、兄弟节点&#xff1a; 6、树的度&#xff1a; 7、树的层次或…

代码随想录-刷题第二天

977. 有序数组的平方 题目链接&#xff1a;977. 有序数组的平方 思路&#xff1a;双指针思想&#xff0c;数组是有序的且含有负数&#xff0c;其中元素的平方一定是两边最大。定义两个指针&#xff0c;从两端开始向中间靠近&#xff0c;每次比较两个指针的元素平方大小&#…

Vue 项目实战——如何在页面中展示 PDF 文件以及 PDFObject 插件实战

文章目录 &#x1f4cb;前言&#x1f3af;使用 HTML 标签&#x1f9e9; embed 标签&#x1f9e9; object标签&#x1f9e9; iframe标签&#x1f9e9;完整代码 &#x1f3af;使用 PDFObject 插件&#x1f9e9;为什么使用 PDFObject 插件&#xff08;AI翻译&#xff09;&#x1f…

cc linux用root用户执行chmod 777 -R ./提示 Operation not permitted怎么办?

如果你作为 root 用户执行 chmod 777 -R ./ 命令时收到 “Operation not permitted” 错误&#xff0c;可能有几个原因&#xff1a; 不可更改 (Immutable) 文件属性&#xff1a; 文件可能被设置为不可更改。即使是 root 用户也不能修改这些文件的权限。使用 lsattr 命令查看文件…

shell条件语句

一.条件测试 1.三种测试方法 ①test命令测试 ②[ ]测试&#xff08;注意前后需要有空格&#xff09; ③[[ ]]&#xff1a;加强版[ ]&#xff0c;测试支持通配符&#xff08;匹配字符串&#xff09;和正则表达式 二.条件语句 2.1 test命令 测试特定的表达式是否成立…

vue2使用el-tag自定义菜单导航标签

需求&#xff1a;使用el-tag写个菜单导航栏&#xff0c;点击路由的时候就添加 功能&#xff1a; 设置鼠标横向滚动并且不展示滚动条添加关闭其他、关闭左侧、关闭右侧、全部关闭标签功能单个标签删除功能添加&#xff0c;固定标签不可删除右键点击展开操作菜单栏设置个默认固定…

【Django使用】4大模块50页md文档,第4篇:Django请求与响应和cookie与session

当你考虑开发现代化、高效且可扩展的网站和Web应用时&#xff0c;Django是一个强大的选择。Django是一个流行的开源Python Web框架&#xff0c;它提供了一个坚实的基础&#xff0c;帮助开发者快速构建功能丰富且高度定制的Web应用 Django全套笔记地址&#xff1a; 请移步这里 …

【性能测试】稳定性/并发压力测试的TPS计算+5W并发场景设计...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、稳定性测试TPS…

Spring实例化对象

默认proxyBeanMethods true&#xff0c;这种方法是用的代理模式创建对象&#xff0c;每次创建都是同一个对象&#xff0c;如果改为false每次都是不同的对象 FactoryBean的使用 定义的类A&#xff0c;造出来一个类B&#xff0c;可以在创造bean之前做一些自己的个性化操作

时序预测 | Matlab实现HPO-ELM猎食者算法优化极限学习机的时间序列预测

时序预测 | Matlab实现HPO-ELM猎食者算法优化极限学习机的时间序列预测 目录 时序预测 | Matlab实现HPO-ELM猎食者算法优化极限学习机的时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现HPO-ELM猎食者算法优化极限学习机时间序列预测 1.data为数据集…

MySQL 日志管理、备份与恢复

一、MySQL 日志管理 MySQL 的日志默认保存位置为 /usr/local/mysql/data vim /etc/my.cnf [mysqld] ##错误日志&#xff0c;用来记录当MySQL启动、停止或运行时发生的错误信息&#xff0c;默认已开启 log-error/usr/local/mysql/data/mysql_error.log #指定日志的保存位置…

交替最小二乘法

前置概念导入 协同过滤&#xff08;Collaborative Filtering&#xff09;&#xff1a;这是一种推荐系统的方法&#xff0c;依据用户之间或物品之间的相似性来进行推荐。协同过滤通常分为两种主要类型&#xff1a;用户基于&#xff08;user-based&#xff09;和物品基于&#xf…

大数据Doris(二十七):Routine Load数据导入演示

文章目录 Routine Load数据导入演示 一、启动kafka集群(三台节点都启动) 二、创建topic

x shell 用作串口调试助手

x shell 用作串口调试助手 Xshell 介绍 是一个强大的安全终端模拟软件&#xff0c;它支持SSH1, SSH2, 以及Microsoft Windows 平台的TELNET 协议。Xshell 通过互联网到远程主机的安全连接以及它创新性的设计和特色帮助用户在复杂的网络环境中享受他们的工作。 Xshell可以在Wi…

【云原生】Spring Cloud Alibaba 之 Gateway 服务网关实战开发

目录 一、什么是网关 ⛅网关的实现原理 二、Gateway 与 Zuul 的区别&#xff1f; 三、Gateway 服务网关 快速入门 ⛄需求 ⏳项目搭建 ✅启动测试 四、Gateway 断言工厂 五、Gateway 过滤器 ⛽过滤器工厂 ♨️全局过滤器 六、源码地址 ⛵小结 一、什么是网关 Spri…

vue3组件外使用route

1.vue3组件外使用route 在写vue3项目时&#xff0c;有时候我们会把组件内部分逻辑代码分离到外部js中&#xff0c;然后在组件里通过import导入。此时如果我们要在组件外使用route对象&#xff0c;方式与组件内不同&#xff1a; 组件内&#xff1a; import { useRoute } from…

Pytorch从零开始实战10

Pytorch从零开始实战——ResNet-50算法实战 本系列来源于365天深度学习训练营 原作者K同学 文章目录 Pytorch从零开始实战——ResNet-50算法实战环境准备数据集模型选择开始训练可视化模型预测总结 环境准备 本文基于Jupyter notebook&#xff0c;使用Python3.8&#xff0c…

可视化大屏时代的到来:智慧城市管理的新思路

随着科技的不断发展&#xff0c;智能芯片作为一种新型的电子元件&#xff0c;被广泛应用于各个领域&#xff0c;其中智慧芯片可视化大屏是一种重要的应用形式。 一、智慧芯片可视化大屏的优势 智慧芯片可视化大屏是一种将智能芯片与大屏幕显示技术相结合的产品&#xff0c;山海…

Cannot read properties of undefined (reading ‘resetFields‘)“ 报错解决

遇到这种报错 先去相关页面搜索关键字 定位到具体的报错代码 Cannot read properties of undefined (reading ‘resetFields’)" 关键字&#xff1a;resetFields 此方法作用&#xff1a;对整个表单进行重置 将所有字段值重置为初始值并移除校验结果 报错场景&#xff1a;…

森林之子/Sons Of The Forest V42457 资源分享

游戏介绍&#xff1a; 视频介绍&#xff1a; 森林之子 资源分享 这里是引用 你被派到了一座孤岛上&#xff0c;寻找一位失踪的亿万富翁&#xff0c;结果却发现自己深陷被食人生物占领的炼狱之地。你需要制作工具和武器、建造房屋&#xff0c;倾尽全力生存下去&#xff0c;无论…