笔尖笔帽检测3:Android实现笔尖笔帽检测算法(含源码 可是实时检测)

目录

1. 前言

2.笔尖笔帽检测方法

(1)Top-Down(自上而下)方法

(2)Bottom-Up(自下而上)方法:

3.笔尖笔帽关键点检测模型训练

4.笔尖笔帽关键点检测模型Android部署

(1) 将Pytorch模型转换ONNX模型

(2) 将ONNX模型转换为TNN模型

(3) Android端上部署模型

(4) Android测试效果 

(5) 运行APP闪退:dlopen failed: library "libomp.so" not found

5.Android项目源码下载

6.C++实现笔尖笔帽关键点检测

7.特别版: 笔尖指尖检测


1. 前言

目前在AI智慧教育领域,有一个比较火热的教育产品,即指尖点读或者笔尖点读功能,其核心算法就是通过深度学习的方法获得笔尖或者指尖的位置,在通过OCR识别文本,最后通过TTS(TextToSpeech)将文本转为语音;其中OCR和TTS算法都已经研究非常成熟了,而指尖或者笔尖检测的方法也有一些开源的项目可以参考实现。本项目将实现笔尖笔帽关键点检测算法,其中使用YOLOv5模型实现手部检测(手握着笔目标检测),使用HRNet,LiteHRNet和Mobilenet-v2模型实现笔尖笔帽关键点检测。项目分为数据标注,模型训练和Android部署等多个章节,本篇是项目《笔尖笔帽检测》系列文章之Android实现笔尖笔帽检测算法;为了方便后续模型工程化和Android平台部署,项目支持高精度HRNet检测模型,轻量化模型LiteHRNet和Mobilenet模型训练和测试,并提供Python/C++/Android多个版本;

轻量化Mobilenet-v2模型在普通Android手机上可以达到实时的检测效果,CPU(4线程)约50ms左右,GPU约30ms左右 ,基本满足业务的性能需求。下表格给出HRNet,以及轻量化模型LiteHRNet和Mobilenet的计算量和参数量,以及其检测精度。

模型input-sizeparams(M)GFLOPsAP
HRNet-w32192×19228.48M5734.05M0.8418
LiteHRNet18192×1921.10M182.15M0.7469
Mobilenet-v2192×1922.63M529.25M0.7531

尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/134070497

Android笔尖笔帽关键点检测APP Demo体验(下载):

https://download.csdn.net/download/guyuealian/88535143

    


更多项目《笔尖笔帽检测》系列文章请参考:

  • 笔尖笔帽检测1:笔尖笔帽检测数据集(含下载链接)https://blog.csdn.net/guyuealian/article/details/134070255
  • 笔尖笔帽检测2:Pytorch实现笔尖笔帽检测算法(含训练代码和数据集)https://blog.csdn.net/guyuealian/article/details/134070483
  • 笔尖笔帽检测3:Android实现笔尖笔帽检测算法(含源码 可是实时检测)https://blog.csdn.net/guyuealian/article/details/134070497
  • 笔尖笔帽检测4:C++实现笔尖笔帽检测算法(含源码 可是实时检测)https://blog.csdn.net/guyuealian/article/details/134070516

 


2.笔尖笔帽检测方法

笔尖笔帽目标较小,如果直接使用目标检测,很难达到像素级别的检测精度;一般建议使用类似于人体关键点检测的方案。目前主流的关键点方法主要两种:一种是Top-Down(自上而下)方法,另外一种是Bottom-Up(自下而上)方法;

(1)Top-Down(自上而下)方法

将手部检测(手握笔的情况)和笔尖笔帽关键点检测分离,在图像上首先进行手部目标检测,定位手部位置;然后crop每一个手部图像,再估计笔尖笔帽关键点;这类方法往往比较慢,但姿态估计准确度较高。目前主流模型主要有CPN,Hourglass,CPM,Alpha Pose,HRNet等。

(2)Bottom-Up(自下而上)方法:

先估计图像中所有笔尖笔帽关键点,然后在通过Grouping的方法组合成一个一个实例;因此这类方法在测试推断的时候往往更快速,准确度稍低。典型就是COCO2016年人体关键点检测冠军Open Pose。

通常来说,Top-Down具有更高的精度,而Bottom-Up具有更快的速度;就目前调研而言, Top-Down的方法研究较多,精度也比Bottom-Up(自下而上)方法高。

本项目采用Top-Down(自上而下)方法,使用YOLOv5模型实现手部检测(手握笔检测),使用HRNet进行手部关键点检测;也可以简单理解为,先使用YOLOv5定位手握笔的区域位置,再使用HRNet进行笔尖笔帽精细化位置定位。

本项目基于开源的HRNet进行改进,关于HRNet项目请参考GitHub

HRNet: https://github.com/leoxiaobin/deep-high-resolution-net.pytorch


3.笔尖笔帽关键点检测模型训练

本项目采用Top-Down(自上而下)方法,使用YOLOv5模型实现手部检测(手笔检测),并基于开源的HRNet进行改进实现笔尖笔帽关键点检测;为了方便后续模型工程化和Android平台部署,项目支持轻量化模型LiteHRNet和Mobilenet模型训练和测试,并提供Python/C++/Android多个版本;轻量化Mobilenet-v2模型在普通Android手机上可以达到实时的检测效果,CPU(4线程)约50ms左右,GPU约30ms左右 ,基本满足业务的性能需求

关于笔尖笔帽关键点检测模型训练,可参考 :

笔尖笔帽检测2:Pytorch实现笔尖笔帽检测算法(含训练代码和数据集)

下表格给出HRNet,以及轻量化模型LiteHRNet和Mobilenet的计算量和参数量,以及其检测精度AP; 高精度检测模型HRNet-w32,AP可以达到0.8418,但其参数量和计算量比较大,不合适在移动端部署;LiteHRNet18和Mobilenet-v2参数量和计算量比较少,合适在移动端部署;虽然LiteHRNet18的理论计算量和参数量比Mobilenet-v2低,但在实际测试中,发现Mobilenet-v2运行速度更快。轻量化Mobilenet-v2模型在普通Android手机上可以达到实时的检测效果,CPU(4线程)约50ms左右,GPU约30ms左右 ,基本满足业务的性能需求

模型input-sizeparams(M)GFLOPsAP
HRNet-w32192×19228.48M5734.05M0.8418
LiteHRNet18192×1921.10M182.15M0.7469
Mobilenet-v2192×1922.63M529.25M0.7531

HRNet-w32参数量和计算量太大,不适合在Android手机部署,本项目Android版本只支持部署LiteHRNet和Mobilenet-v2模型;C++版本可支持部署HRNet-w32,LiteHRNet和Mobilenet-v2模型 


4.笔尖笔帽关键点检测模型Android部署

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行Android端上部署。部署流程可分为四步:训练模型->将模型转换ONNX模型->将ONNX模型转换为TNN模型->Android端上部署TNN模型。

(1) 将Pytorch模型转换ONNX模型

训练好Pytorch模型后,我们需要先将模型转换为ONNX模型,以便后续模型部署。

  • 原始Python项目提供转换脚本,你只需要修改model_file和config_file为你模型路径即可
  •  convert_torch_to_onnx.py实现将Pytorch模型转换ONNX模型的脚本
python libs/convert_tools/convert_torch_to_onnx.py
"""
This code is used to convert the pytorch model into an onnx format model.
"""
import os
import torch.onnx
from pose.inference import PoseEstimation
from basetrainer.utils.converter import pytorch2onnx


def load_model(config_file, model_file, device="cuda:0"):
    pose = PoseEstimation(config_file, model_file, device=device)
    model = pose.model
    config = pose.config
    return model, config


def convert2onnx(config_file, model_file, device="cuda:0", onnx_type="kp"):
    """
    :param model_file:
    :param input_size:
    :param device:
    :param onnx_type:
    :return:
    """
    model, config = load_model(config_file, model_file, device=device)
    model = model.to(device)
    model.eval()
    model_name = os.path.basename(model_file)[:-len(".pth")]
    onnx_file = os.path.join(os.path.dirname(model_file), model_name + ".onnx")
    # dummy_input = torch.randn(1, 3, 240, 320).to("cuda")
    input_size = tuple(config.MODEL.IMAGE_SIZE)  # w,h
    input_shape = (1, 3, input_size[1], input_size[0])
    pytorch2onnx.convert2onnx(model,
                              input_shape=input_shape,
                              input_names=['input'],
                              output_names=['output'],
                              onnx_file=onnx_file,
                              opset_version=11)


if __name__ == "__main__":
    config_file = "../../work_space/pen/mobilenet_v2_2_192_192_custom_coco_20231114_000651_3262/mobilenetv2_192_192.yaml"
    model_file = "../../work_space/pen/mobilenet_v2_2_192_192_custom_coco_20231114_000651_3262/model/model_199_0.7518.pth"
    convert2onnx(config_file, model_file)

(2) 将ONNX模型转换为TNN模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行Android端上部署

TNN转换工具:

  • (1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub
  • (2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine   (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)

​​

(3) Android端上部署模型

项目实现了Android版本的手部检测(手握着笔)和笔尖笔帽关键点检测Demo,部署框架采用TNN,支持多线程CPU和GPU加速推理,在普通手机上可以实时处理。项目Android源码,核心算法均采用C++实现,上层通过JNI接口调用。

如果你想在这个Android Demo部署你自己训练的分类模型,你可将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把TNN模型代替你模型即可。 

HRNet-w32参数量和计算量太大,不适合在Android手机部署,本项目Android版本只支持部署LiteHRNet和Mobilenet-v2模型;C++版本可支持部署HRNet-w32,LiteHRNet和Mobilenet-v2模型 

  • 这是项目Android源码JNI接口 ,Java部分
package com.cv.tnn.model;

import android.graphics.Bitmap;

public class Detector {

    static {
        System.loadLibrary("tnn_wrapper");
    }


    /***
     * 初始化检测模型
     * @param dets_model: 检测模型(不含后缀名)
     * @param pose_model: 识别模型(不含后缀名)
     * @param root:模型文件的根目录,放在assets文件夹下
     * @param model_type:模型类型
     * @param num_thread:开启线程数
     * @param useGPU:是否开启GPU进行加速
     */
    public static native void init(String dets_model, String pose_model, String root, int model_type, int num_thread, boolean useGPU);

    /***
     * 返回检测和识别结果
     * @param bitmap 图像(bitmap),ARGB_8888格式
     * @param score_thresh:置信度阈值
     * @param iou_thresh:  IOU阈值
     * @param pose_thresh:  关键点阈值
     * @return
     */
    public static native FrameInfo[] detect(Bitmap bitmap, float score_thresh, float iou_thresh, float pose_thresh);
}
  • 这是Android项目源码JNI接口 ,C++部分
#include <jni.h>
#include <string>
#include <fstream>
#include "src/yolov5.h"
#include "src/pose_detector.h"
#include "src/Types.h"
#include "debug.h"
#include "android_utils.h"
#include "opencv2/opencv.hpp"
#include "file_utils.h"

using namespace dl;
using namespace vision;

static YOLOv5 *detector = nullptr;
static PoseDetector *pose = nullptr;

JNIEXPORT jint JNI_OnLoad(JavaVM *vm, void *reserved) {
    return JNI_VERSION_1_6;
}

JNIEXPORT void JNI_OnUnload(JavaVM *vm, void *reserved) {

}


extern "C"
JNIEXPORT void JNICALL
Java_com_cv_tnn_model_Detector_init(JNIEnv *env,
                                    jclass clazz,
                                    jstring dets_model,
                                    jstring pose_model,
                                    jstring root,
                                    jint model_type,
                                    jint num_thread,
                                    jboolean use_gpu) {
    if (detector != nullptr) {
        delete detector;
        detector = nullptr;
    }
    std::string parent = env->GetStringUTFChars(root, 0);
    std::string dets_model_ = env->GetStringUTFChars(dets_model, 0);
    std::string pose_model_ = env->GetStringUTFChars(pose_model, 0);
    string dets_model_file = path_joint(parent, dets_model_ + ".tnnmodel");
    string dets_proto_file = path_joint(parent, dets_model_ + ".tnnproto");
    string pose_model_file = path_joint(parent, pose_model_ + ".tnnmodel");
    string pose_proto_file = path_joint(parent, pose_model_ + ".tnnproto");
    DeviceType device = use_gpu ? GPU : CPU;
    LOGW("parent     : %s", parent.c_str());
    LOGW("useGPU     : %d", use_gpu);
    LOGW("device_type: %d", device);
    LOGW("model_type : %d", model_type);
    LOGW("num_thread : %d", num_thread);
    YOLOv5Param model_param = YOLOv5s05_320;//模型参数
    detector = new YOLOv5(dets_model_file,
                          dets_proto_file,
                          model_param,
                          num_thread,
                          device);

    PoseParam pose_param = POSE_MODEL_TYPE[model_type];//模型类型
    pose = new PoseDetector(pose_model_file,
                            pose_proto_file,
                            pose_param,
                            num_thread,
                            device);
}

extern "C"
JNIEXPORT jobjectArray JNICALL
Java_com_cv_tnn_model_Detector_detect(JNIEnv *env, jclass clazz, jobject bitmap,
                                      jfloat score_thresh, jfloat iou_thresh, jfloat pose_thresh) {
    cv::Mat bgr;
    BitmapToMatrix(env, bitmap, bgr);
    int src_h = bgr.rows;
    int src_w = bgr.cols;
    // 检测区域为整张图片的大小
    FrameInfo resultInfo;
    // 开始检测
    if (detector != nullptr) {
        detector->detect(bgr, &resultInfo, score_thresh, iou_thresh);
    } else {
        ObjectInfo objectInfo;
        objectInfo.x1 = 0;
        objectInfo.y1 = 0;
        objectInfo.x2 = (float) src_w;
        objectInfo.y2 = (float) src_h;
        objectInfo.label = 0;
        resultInfo.info.push_back(objectInfo);
    }

    int nums = resultInfo.info.size();
    LOGW("object nums: %d\n", nums);
    if (nums > 0) {
        // 开始检测
        pose->detect(bgr, &resultInfo, pose_thresh);
        // 可视化代码
        //classifier->visualizeResult(bgr, &resultInfo);
    }
    //cv::cvtColor(bgr, bgr, cv::COLOR_BGR2RGB);
    //MatrixToBitmap(env, bgr, dst_bitmap);
    auto BoxInfo = env->FindClass("com/cv/tnn/model/FrameInfo");
    auto init_id = env->GetMethodID(BoxInfo, "<init>", "()V");
    auto box_id = env->GetMethodID(BoxInfo, "addBox", "(FFFFIF)V");
    auto ky_id = env->GetMethodID(BoxInfo, "addKeyPoint", "(FFF)V");
    jobjectArray ret = env->NewObjectArray(resultInfo.info.size(), BoxInfo, nullptr);
    for (int i = 0; i < nums; ++i) {
        auto info = resultInfo.info[i];
        env->PushLocalFrame(1);
        //jobject obj = env->AllocObject(BoxInfo);
        jobject obj = env->NewObject(BoxInfo, init_id);
        // set bbox
        //LOGW("rect:[%f,%f,%f,%f] label:%d,score:%f \n", info.rect.x,info.rect.y, info.rect.w, info.rect.h, 0, 1.0f);
        env->CallVoidMethod(obj, box_id, info.x1, info.y1, info.x2 - info.x1, info.y2 - info.y1,
                            info.label, info.score);
        // set keypoint
        for (const auto &kps : info.keypoints) {
            //LOGW("point:[%f,%f] score:%f \n", lm.point.x, lm.point.y, lm.score);
            env->CallVoidMethod(obj, ky_id, (float) kps.point.x, (float) kps.point.y,
                                (float) kps.score);
        }
        obj = env->PopLocalFrame(obj);
        env->SetObjectArrayElement(ret, i, obj);
    }
    return ret;
}

(4) Android测试效果 

Android Demo在普通手机CPU/GPU上可以达到实时检测效果;CPU(4线程)约50ms左右,GPU约30ms左右 ,基本满足业务的性能需求。

Android笔尖笔帽关键点检测APP Demo体验(下载):

https://download.csdn.net/download/guyuealian/88535143

       

     

(5) 运行APP闪退:dlopen failed: library "libomp.so" not found

参考解决方法:
解决dlopen failed: library “libomp.so“ not found_PKing666666的博客-CSDN博客_dlopen failed

 Android SDK和NDK相关版本信息,请参考: 

 


5.Android项目源码下载

Android项目源码下载地址:Android实现笔尖笔帽检测算法(含源码 可是实时检测)

整套Android项目源码内容包含:

  1. Android Demo源码支持YOLOv5手部检测(手握笔检测)
  2. Android Demo源码支持轻量化模型LiteHRNet和Mobilenet-v2笔尖笔帽关键点检测
  3. Android Demo在普通手机CPU/GPU上可以实时检测,CPU约50ms,GPU约30ms左右
  4. Android Demo支持图片,视频,摄像头测试
  5. 所有依赖库都已经配置好,可直接build运行,若运行出现闪退,请参考dlopen failed: library “libomp.so“ not found 解决。


6.C++实现笔尖笔帽关键点检测

  • 笔尖笔帽检测4:C++实现笔尖笔帽检测算法(含源码 可是实时检测)https://blog.csdn.net/guyuealian/article/details/134070516

7.特别版: 笔尖指尖检测

碍于篇幅,本文章只实现了笔尖笔帽关键点检测;实质上,要实现指尖点读或者笔尖点读功能,我们可能并不需要笔帽检测,而是需要实现笔尖+指尖检测功能;其实现方法与笔尖笔帽关键点检测类似。

下面是成功产品落地应用的笔尖+指尖检测算法Demo,其检测精度和速度性能都比笔尖笔帽检测的效果要好。

如果你需要笔尖+指尖检测算法,可在公众号咨询联系

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/172551.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

选择「程序员」职业的8个理由

软件开发人员是具有创建软件程序的创意和技术技能的专业人员&#xff0c;是一个具有高回报和挑战性的职业选择。如今&#xff0c;软件开发人员几乎在每个行业工作。随着世界变得越来越数字化&#xff0c;越来越需要具有技术背景的人来创建特定的软件应用程序。 如果您考虑做一…

亚马逊运营中动态/静态住宅IP代理的应用有哪些?跨境电商必备

作为全球最大的电商平台之一&#xff0c;亚马逊已经成为许多商家的首选销售平台。而代理IP作为近几天互联网的热门工具&#xff0c;在跨境电商界也起着非常强大的作用。那么在亚马逊运营中&#xff0c;适合动态住宅代理还是静态住宅代理呢&#xff1f;下面我们一起来探索&#…

第十一章 目标检测中的NMS

精度提升 众所周知&#xff0c;非极大值抑制NMS是目标检测常用的后处理算法&#xff0c;用于剔除冗余检测框&#xff0c;本文将对可以提升精度的各种NMS方法及其变体进行阶段性总结。 总体概要&#xff1a; 对NMS进行分类&#xff0c;大致可分为以下六种&#xff0c;这里是依…

ESP32 Arduino实战协议篇-BLE 客户端实现温度和湿度数据传输

2) ESP32 BLE 客户端 在本节中,我们将创建 ESP32 BLE 客户端,该客户端将与 ESP32 BLE 服务器建立连接,并在 OLED 显示屏上显示读数。 示意图 ESP32 BLE 客户端连接到 OLED 显示屏。显示屏显示通过蓝牙接收的读数。 按照下一个原理图将 OLED 显示屏连接到 ESP32。SCL 引脚…

[Linux] shell条件语句和if语句

一、条件语句 1.1 测试 test 测试文件的表达式是否成立 格式&#xff1a;test 条件表达式 [ 条件表达式 ] 选项作用-d测试是否为目录-e测试目录或文件是否存在-a测试目录或文件是否存在-f测试是否为文件-r测试当前用户是否有权限读取-w测试当前用户是否有权限写入-x测试当前…

一款类似宜搭、轻流的低代码核心功能:jvs-flow(流程引擎)

在数字化浪潮不断席卷全球的今天&#xff0c;企业正面临着前所未有的挑战。为了更快、更好地适应这一变革&#xff0c;越来越多的企业开始寻求利用低代码工作流引擎来推动自身的数字化转型。JVS低代码平台中&#xff0c;工作流引擎是核心引擎之一。它提供了一种可视化、易操作的…

[Linux] shell脚本相关知识

一、shell脚本基础 1.1 shell脚本的作用 shell将人类使用的高级语言翻译成二进制&#xff0c;再将二进制翻译成高级语言。换句话就是人类写了一个命令集合&#xff0c;然后用bash去翻译给硬件执行。 linux中常见的shell&#xff1a; bash:基于gun的框架下发展的shell csh:类…

【18年扬大真题】已知a数组int a[ ]={1,2,3,4,5,6,7,8,9,10},编写程序,求a数组中偶数的个数和偶数的平均值

【18年扬大真题】 已知a数组int a[ ]{1,2,3,4,5,6,7,8,9,10}&#xff0c;编写程序&#xff0c;求a数组中偶数的个数和偶数的平均值 int main() {int arr[10] { 1,2,3,4,5,6,7,8,9,10 };int os 0;//偶数个数int sum 0;//偶数和float ave 0;//偶数平均值for (int i 0;i <…

4-11 四个数排序

#include<stdio.h> int main(){int t,a,b,c,d;printf("请输入四个数&#xff1a;");scanf("%d %d %d %d",&a,&b,&c,&d);printf("a%d,b%d,c%d,d%d\n",a,b,c,d);if(a>b){ta;ab;bt;}if(a>c){ta;ac;ct;}if(a>d){ta;a…

Simulink 自动代码生成:手写代码替换生成代码Code Replacement Tool使用

目录 前言 代码替换库操作步骤 代码生成验证 总结 前言 在实际工程开发过程中&#xff0c;Simulink生成的代码都是构建的算法实现的&#xff0c;纯软件实现&#xff0c;生成的代码大多也是直接在CPU上运行的。实际还有一些MCU集成了像Cordic&#xff0c;协处理器等。有些代…

小程序实现chatGpt功能

效果如下: SSE问题太多&#xff0c;所以还是配合websorket实现 1.连接sorket const handleConnectWebScoket (session_id:Number) > {uni.showLoading({title: 加载中})uni.connectSocket({url: //后端url, success(data) {console.log("websocket连接成功"…

Linux中Team链路聚合配置

目录 一、Team介绍 二、网卡的bonding和Teaming技术 三、Teaming常用工作模式 四、实验环境 五、添加物理网卡 1、给虚拟机新增四张物理网卡 2、查看网卡信息 六、Team链路聚合配置 1、创建team0的网络接口 2、为team0设置静态IP,掩码位&#xff0c;网关&#xff0c;dns…

NodeMCU ESP8266构建Web Server网页端控制设备

NodeMCU ESP8266构建Web Server网页端控制设备 前言 NodeMCU ESP8266 内部集成了TCP/IP协议栈&#xff0c;可以快速构建网络功能&#xff0c;搭建联网应用的硬件平台&#xff1b; ESP8266可以作为WiFi接入点&#xff08;Station&#xff09;&#xff0c;这样可以方便连接互联…

计算机网络——网络可靠性及网络出口配置

1. 前言&#xff1a; 学习目标&#xff1a; 1.了解链路聚合的作用 2. 了解ACL的工作原理 3. 了解NAT的工作原理和配置 2. 网络可靠性方案 网络可靠性是指网络在面对各种异常情况或故障时&#xff0c;能够维持正常运行和提供服务的能力。这包括防止网络中断、减小数据丢失的可能…

HelpLook VS Zendesk:哪种知识库软件更适合您的业务

为任何组织创造一个开放且协作的环境至关重要。然而&#xff0c;高水平的员工每周可能会花费多达30个小时处理电子邮件和协作&#xff0c;对他们的工作效率产生了重大影响。 为了解决这个挑战&#xff0c;建立一种高效的信息共享方法至关重要&#xff0c;不会妨碍团队的生产力…

hadoop 日志聚集功能配置 hadoop(十一)

由图所示&#xff0c;本文主要是将三台机器log 进行日志聚集查看。图更加直观 1. 首先需要配置历史服务器配置&#xff0c;才可以配置日志聚集功能&#xff1a; hadoop 配置历史服务器 开启历史服务器查看 hadoop (十)-CSDN博客 2. 配置了三台服务器&#xff0c;hadoop22, ha…

如何做好前端单元测试?字节5年测试老司机是这样说的!

近几年&#xff0c;前端发展越来越迅猛&#xff0c;各类框架层出不穷&#xff0c;前端实现的业务逻辑也越来越复杂&#xff0c;前端单元测试也越来越受重视&#xff0c;包括百度在内的一些大厂在面试中也会问到单元测试相关的题目。那么前端应该如何做好单元测试&#xff1f; 什…

深度学习之基于yolo的体育运动项目姿态估计识别计数系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 深度学习在体育运动项目姿态估计识别计数系统中的应用是一项具有挑战性和应用价值的研究领域。以下是对深度学习在体…

OpenStack-train版安装之环境准备

环境准备 环境介绍VMware配置WMware虚拟机最低配置WMware添加网卡WMware添加硬盘 基础环境安装修改各节点的主机名修改各节点的hosts文件修改各节点的内核参数关闭各节点的防火墙和selinux安装NPT&#xff08;时间同步&#xff09;安装OpenStack基础服务包 CentOS升级内核 环境…

【STM32】W25Q64 SPI(串行外设接口)

一、SPI通信 0.IIC与SPI的优缺点 https://blog.csdn.net/weixin_44575952/article/details/124182011 1.SPI介绍 同步&#xff08;有时钟线&#xff09;&#xff0c;高速&#xff0c;全双工&#xff08;数据发送和数据接收各占一条线&#xff09; 1&#xff09;SCK:时钟线--&…