时间序列预测实战(十七)PyTorch实现LSTM-GRU模型长期预测并可视化结果(附代码+数据集+详细讲解)

 

一、本文介绍

本文给大家带来的实战内容是利用PyTorch实现LSTM-GRU模型,LSTM和GRU都分别是RNN中最常用Cell之一,也都是时间序列预测中最常见的结构单元之一,本文的内容将会从实战的角度带你分析LSTM和GRU的机制和效果,同时如果你是时间序列中的新手,这篇文章会带你了解整个时间序列的建模过程,同时本文的实战代码支持多元预测单元、单元预测单元、多元预测多元,本文的实战内容通过时间序列领域最经典的数据集——电力负荷数据集为例进行预测。

内容回顾->时间序列预测专栏——包含上百种时间序列模型带你从入门到精通时间序列预测

预测类型->单元预测、多元预测、长期预测

目录

一、本文介绍

二、LSTM和GRU的机制原理

2.1LSTM的机制原理

2.2.1忘记门

2.2.2输入门

2.2.3输出门

2.2GRU的机制原理 

2.2.1GRU的基本原理

2.2.1GRU的基本框架

2.3 融合思想 

三、数据集介绍 

四、参数讲解 

五、模型实战 

5.1 模型完整代码

5.2 模型训练 

5.3 模型预测 

5.4 结果分析

六、全文总结


二、LSTM和GRU的机制原理

2.1LSTM的机制原理

LSTM(长短期记忆,Long Short-Term Memory)是一种用于处理序列数据的深度学习模型属于循环神经网络(RNN)的一种变体,其使用一种类似于搭桥术结构的RNN单元。相对于普通的RNN,LSTM引入了门控机制,能够更有效地处理长期依赖和短期记忆问题,是RNN网络中最常使用的Cell之一。

LSTM通过刻意的设计来实现学习序列关系的同时,又能够避免长期依赖的问题。它的结构示意图如下所示。

在LSTM的结构示意图中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。其中“+”号代表着运算操作(如矢量的和)而矩形代表着学习到的神经网络层。汇合在一起的线表示向量的连接,分叉的线表示内容被复制,然后分发到不同的位置。

如果上面的LSTM结构图你看着很难理解,但是其实LSTM的本质就是一个带有tanh激活函数的简单RNN,如下图所示。

LSTM这种结构的原理是引入一个称为细胞状态的连接。这个状态细胞用来存放想要的记忆的东西(对应简单LSTM结构中的h,只不过这里面不再只保存上一次状态了,而是通过网络学习存放那些有用的状态),同时在加入三个门,分别是

        忘记门:决定什么时候将以前的状态忘记。

        输入门:决定什么时候将新的状态加进来。

        输出门:决定什么时候需要把状态和输入放在一起输出。

从字面上可以看出,由于三个门的操作,LSTM在状态的更新和状态是否要作为输入,全部交给了神经网络的训练机制来选择。

下面分别来介绍一下三个门的结构和作用。

2.2.1忘记门

下图所示为忘记门的操作,忘记门决定模型会从细胞状态中丢弃什么信息

忘记门会读取前一序列模型的输出h_{t-1}和当前模型的输入X_{t}来控制细胞状态中的每个数是否保留。

例如:在一个语言模型的例子中,假设细胞状态会包含当前主语的性别,于是根据这个状态便可以选择正确的代词。当我们看到新的主语时,应该把新的主语在记忆中更新。忘记们的功能就是先去记忆中找到一千那个旧的主语(并没有真正执行忘记的操作,只是找到而已。

在上图的LSTM的忘记门中,f_{t}代表忘记门的输出, α代表激活函数,W_{f}代表忘记门的权重,x_{t}代表当前模型的输入,h_{t-1}代表前一个序列模型的输出,b_{f}代表忘记门的偏置。

2.2.2输入门

输入门可以分为两部分功能,一部分是找到那些需要更新的细胞状态。另一部分是把需要更新的信息更新到细胞状态里

在上面输入门的结构中,I_{t}代表要更新的细胞状态,α代表激活函数,x_{t}代表当前模型的输入,h_{t-1}代表前一个序列模型的输出,W_{t}代表计算I_{t}的权重,b_{t}代表计算I_{t}的偏置,_{}C_{t}代表使用tanh所创建的新细胞状态,W_{c}代表计算C_{t}的权重,b_{c}代表计算C_{t}的偏置。

忘记门找到了需要忘掉的信息f_{t}后,在将它与旧状态相乘,丢弃确定需要丢弃的信息。(如果需要丢弃对应位置权重设置为0),然后,将结果加上I_{t} * C_{t}使细胞状态获得新的信息。这样就完成了细胞状态的更新,如下图输入门的更新图所示。

再上图LSTM输入门的更新图中,B_{t}代表忘记门的输出结果, f_{t}代表忘记门的输出结果,B_{t-1}代表前一个序列模型的细胞状态,I_{t}代表要更新的细胞状态,\widetilde{C_{t}}代表使用tanh所创建的新细胞状态。

2.2.3输出门

如下图LSTM的输出门结构图所示,在输出门中,通过一个激活函数层(实际使用的是Sigmoid激活函数)来确定哪个部分的信息将输出,接着把细胞状态通过tanh进行处理(得到一个在-1~1的值),并将它和Sigmoid门的输出相乘,得出最终想要输出的那个部分,例如,在语言模型中,假设已经输入了一个代词,便会计算出需要输出一个与该代词相关的信息(词向量)

在LSTM的输出门结构图中,O_{t}代表要输出的信息,α代表激活函数,W_{o}代表计算 O_{t}的权重,b_{o}代表计算O_{t}的偏置,B_{t}代表更新后的细胞状态,h_{t}代表当前序列模型的输出结果。

2.2GRU的机制原理 

2.2.1GRU的基本原理

GRU(门控循环单元)是一种循环神经网络(RNN)的变体,主要用于处理序列数据,它的基本原理可以概括如下:

  1. 门控机制:GRU的核心是门控机制,包括更新门(update gate)和重置门(reset gate)。这些门控制着信息的流动,即决定哪些信息应该被保留,哪些应该被遗忘。

  2. 更新门:更新门帮助模型决定过去的信息有多少需要保留到当前状态。它是通过当前输入和前一个隐状态计算得出的,用于调节隐状态的更新程度。

  3. 重置门:重置门决定了多少过去的信息需要被忘记。它同样依赖于当前输入和前一个隐状态的信息。当重置门接近0时,模型会“忘记”过去的隐状态,只依赖于当前输入。

  4. 当前隐状态的计算:利用更新门和重置门的输出,结合前一隐状态和当前输入,GRU计算出当前的隐状态。这个隐状态包含了序列到目前为止的重要信息。

  5. 输出:GRU的最终输出通常是在序列的每个时间步上产生的,或者在序列的最后一个时间步产生,取决于具体的应用场景。

总结:GRU相较于传统的RNN,其优势在于能够更有效地处理长序列数据,减轻了梯度消失的问题。同时,它通常比LSTM(长短期记忆网络)更简单,因为它有更少的参数。

2.2.1GRU的基本框架

上面的图片为一个GRU的基本结构图,解释如下->

  • 更新门(z) 在决定是否用新的隐藏状态更新当前隐藏状态时扮演重要角色。
  • 重置门(r) 决定是否忽略之前的隐藏状态。

这些部分是GRU的核心组成,它们共同决定了网络如何在序列数据中传递和更新信息,这对于时间序列分析至关重要。

2.3 融合思想 

三、数据集介绍 

我们本文用到的数据集是官方的ETTh1.csv ,该数据集是一个用于时间序列预测的电力负荷数据集,它是 ETTh 数据集系列中的一个。ETTh 数据集系列通常用于测试和评估时间序列预测模型。以下是 ETTh1.csv 数据集的一些内容:

数据内容:该数据集通常包含有关电力系统的多种变量,如电力负荷、价格、天气情况等。这些变量可以用于预测未来的电力需求或价格。

时间范围和分辨率:数据通常按小时或天记录,涵盖了数月或数年的时间跨度。具体的时间范围和分辨率可能会根据数据集的版本而异。 

以下是该数据集的部分截图->

四、参数讲解 

下面的代码是我定义的所有参数,目前只有这些,这个框架我会进行补充,后期也会在这里进行更新。 

    parser = argparse.ArgumentParser(description='Time Series forecast')
    parser.add_argument('-model', type=str, default='LSTM-GRU', help="模型持续更新")
    parser.add_argument('-window_size', type=int, default=48, help="时间窗口大小, window_size > pre_len")
    parser.add_argument('-pre_len', type=int, default=24, help="预测未来数据长度")
    # data
    parser.add_argument('-shuffle', action='store_true', default=True, help="是否打乱数据加载器中的数据顺序")
    parser.add_argument('-data_path', type=str, default='ETTh1.csv', help="你的数据数据地址")
    parser.add_argument('-target', type=str, default='OT', help='你需要预测的特征列,这个值会最后保存在csv文件里')
    parser.add_argument('-input_size', type=int, default=7, help='你的特征个数不算时间那一列')
    parser.add_argument('-feature', type=str, default='MS', help='[M, S, MS],多元预测多元,单元预测单元,多元预测单元')
    # learning
    parser.add_argument('-lr', type=float, default=0.001, help="学习率")
    parser.add_argument('-drop_out', type=float, default=0.05, help="随机丢弃概率,防止过拟合")
    parser.add_argument('-epochs', type=int, default=15, help="训练轮次")
    parser.add_argument('-batch_size', type=int, default=128, help="批次大小")
    parser.add_argument('-save_path', type=str, default='models')

    # model
    parser.add_argument('-hidden-size', type=int, default=64, help="隐藏层单元数")
    parser.add_argument('-kernel-sizes', type=str, default='3')
    # device
    parser.add_argument('-use_gpu', type=bool, default=False)
    parser.add_argument('-device', type=int, default=0, help="只设置最多支持单个gpu训练")

    # option
    parser.add_argument('-train', type=bool, default=True)
    parser.add_argument('-predict', type=bool, default=True)
    parser.add_argument('-test', action='store_true', default=False)
    parser.add_argument('-lr-scheduler', type=bool, default=True)
    args = parser.parse_args()

参数的详细讲解->

参数名称参数类型参数讲解
1modelstr模型名称
2window_sizeint时间窗口大小大小需要注意window_size需要大于pre_len
3pre_lenint预测未来数据的长度
4shufflebool是否打乱dataloader中的数据
5data_pathstr你的数据地址
6targetstr你需要预测的特征列,这个值最后会保存在csv的文件里
7input_sizeint你的特征列个数不算时间那一列
8featurestr[M, S, MS],多元预测多元,单元预测单元,多元预测单元
9lrfloat学习率大小,
10drop_outfloat随机丢弃概率,不要太大
11epochsint训练轮次,小于30一般比较合理
12batch_sizeint一个批次的大小
13svae_pathstr模型的保存的路径
14hidden_sizeint隐藏层的单元个数
15kernel_sizesint卷积核大小
16use_gpubool是否使用GPU
17deviceintGPU的编号
18trainbool是否进行训练
19predictbool是否进行预测
20lr_schedulerbool是否使用学习率计划。

五、模型实战 

5.1 模型完整代码

下面是模型的暂时代码,后期会持续更新内容,以后的实战也会基于这个版本的框架下进行。 

我们将下面的代码创建一个py文件复制进去即可运行。 

import argparse
import time
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from matplotlib import pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import DataLoader
import torch
from torch.utils.data import Dataset
import torch.nn.functional as F
# 随机数种子
np.random.seed(0)

class TimeSeriesDataset(Dataset):
    def __init__(self, sequences):
        self.sequences = sequences

    def __len__(self):
        return len(self.sequences)

    def __getitem__(self, index):
        sequence, label = self.sequences[index]
        return torch.Tensor(sequence), torch.Tensor(label)


def create_inout_sequences(input_data, tw, pre_len):
    # 创建时间序列数据专用的数据分割器
    inout_seq = []
    L = len(input_data)
    for i in range(L - tw):
        train_seq = input_data[i:i + tw]
        if (i + tw + pre_len) > len(input_data):
            break
        train_label = input_data[i + tw:i + tw + pre_len]
        inout_seq.append((train_seq, train_label))
    return inout_seq


def calculate_mae(y_true, y_pred):
    # 平均绝对误差
    mae = np.mean(np.abs(y_true - y_pred))
    return mae


def create_dataloader(config, device):
    print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>创建数据加载器<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<")
    df = pd.read_csv(config.data_path)  # 填你自己的数据地址,自动选取你最后一列数据为特征列 # 添加你想要预测的特征列
    pre_len = config.pre_len  # 预测未来数据的长度
    train_window = config.window_size  # 观测窗口

    # 将特征列移到末尾
    target_data = df[[config.target]]
    df = df.drop(config.target, axis=1)
    df = pd.concat((df, target_data), axis=1)

    cols_data = df.columns[1:]
    df_data = df[cols_data]

    # 这里加一些数据的预处理, 最后需要的格式是pd.series
    true_data = df_data.values

    # 定义标准化优化器
    scaler_train = MinMaxScaler(feature_range=(0, 1))
    scaler_valid = MinMaxScaler(feature_range=(0, 1))
    scaler_test = MinMaxScaler(feature_range=(0, 1))

    # 训练集、验证集、测试集划分
    train_data = true_data[:int(0.75 * len(true_data))]
    valid_data = true_data[int(0.75 * len(true_data)):int(0.80 * len(true_data))]
    test_data = true_data[int(0.80 * len(true_data)):]
    print("训练集尺寸:", len(train_data), "测试集尺寸:", len(test_data), "验证集尺寸:", len(valid_data))

    # 进行标准化处理
    train_data_normalized = scaler_train.fit_transform(train_data)
    test_data_normalized = scaler_test.fit_transform(test_data)
    valid_data_normalized = scaler_valid.fit_transform(valid_data)

    # 转化为深度学习模型需要的类型Tensor
    train_data_normalized = torch.FloatTensor(train_data_normalized).to(device)
    test_data_normalized = torch.FloatTensor(test_data_normalized).to(device)
    valid_data_normalized = torch.FloatTensor(valid_data_normalized).to(device)

    # 定义训练器的的输入
    train_inout_seq = create_inout_sequences(train_data_normalized, train_window, pre_len)
    test_inout_seq = create_inout_sequences(test_data_normalized, train_window, pre_len)
    valid_inout_seq = create_inout_sequences(valid_data_normalized, train_window, pre_len)

    # 创建数据集
    train_dataset = TimeSeriesDataset(train_inout_seq)
    test_dataset = TimeSeriesDataset(test_inout_seq)
    valid_dataset = TimeSeriesDataset(valid_inout_seq)

    # 创建 DataLoader
    train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True)
    test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, drop_last=True)
    valid_loader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, drop_last=True)

    print("通过滑动窗口共有训练集数据:", len(train_loader))
    print("通过滑动窗口共有测试集数据:", len(test_loader))
    print("通过滑动窗口共有验证集数据:", len(test_loader))
    print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>创建数据加载器完成<<<<<<<<<<<<<<<<<<<<<<<<<<<")
    return train_loader, test_loader, valid_loader, scaler_test


class LSTM_GRU(nn.Module):
    def __init__(self, args, device):
        super(LSTM_GRU, self).__init__()
        self.args = args
        self.device = device
        self.dropout = nn.Dropout(args.drop_out)

        self.lstm = nn.LSTM(args.input_size, args.hidden_size , batch_first=True)
        self.gru = nn.GRU(input_size=args.hidden_size , hidden_size=args.hidden_size, num_layers=1, batch_first=True)
        self.linearOut = nn.Linear(args.hidden_size, args.input_size)


    def forward(self, x):

        hidden = ((torch.zeros(1, x.size(0), self.args.hidden_size ).to(self.device)),
                  (torch.zeros(1, x.size(0), self.args.hidden_size ).to(self.device)))
        x, lstm_h = self.lstm(x, hidden)
        x = self.dropout(x)
        x = F.tanh(torch.transpose(x, 1, 2))
        x = x.permute(0, 2, 1)
        x, gru_ = self.gru(x)
        x = self.dropout(x)
        x = F.tanh(torch.transpose(x, 1, 2))
        x = x.permute(0, 2, 1)
        x = self.linearOut(x)
        x = x[:, -args.pre_len:, :]

        return x


def train(model, args, device, scaler):
    losss = []
    lstm_model = model
    loss_function = nn.MSELoss()
    optimizer = torch.optim.Adam(lstm_model.parameters(), lr=0.005)
    epochs = args.epochs
    lstm_model.train()  # 训练模式
    for i in range(epochs):
        start_time = time.time()  # 计算起始时间
        for seq, labels in train_loader:
            lstm_model.train()

            optimizer.zero_grad()

            y_pred = lstm_model(seq)

            single_loss = loss_function(y_pred, labels)

            single_loss.backward()

            optimizer.step()
            print(f'epoch: {i:3} loss: {single_loss.item():10.8f}')
        losss.append(single_loss.detach().numpy())
    torch.save(lstm_model.state_dict(), 'save_model.pth')
    print(f"模型已保存,用时:{(time.time() - start_time) / 60:.4f} min")

    test(model, args, scaler)
    # valid()

def test(model, args, scaler):
    lstm_model = model
    # 加载模型进行预测
    lstm_model.load_state_dict(torch.load('save_model.pth'))
    lstm_model.eval()  # 评估模式
    results = []
    reals = []
    losss = []

    for seq, labels in test_loader:
        pred = lstm_model(seq)
        mae = calculate_mae(pred.detach().numpy(), np.array(labels.detach()))  # MAE误差计算绝对值(预测值  - 真实值)
        losss.append(mae)
        for j in range(args.batch_size):
            for i in range(args.pre_len):
                reals.append(labels[j][i].detach().numpy())
                results.append(pred[j][i].detach().numpy())

    reals = scaler.inverse_transform(np.array(reals))
    results = scaler.inverse_transform(np.array(results))
    print("测试集预测结果:", results)
    print("测试集误差MAE:", losss)

    plt.figure()
    plt.style.use('ggplot')
    # 创建折线图
    plt.plot(reals[:, -1], label='real', color='blue')  # 实际值
    plt.plot(results[:, -1], label='forecast', color='red', linestyle='--')  # 预测值

    # 增强视觉效果
    plt.grid(True)
    plt.title('real vs forecast')
    plt.xlabel('time')
    plt.ylabel('value')
    plt.legend()
    plt.savefig('test——results.png')


def pre_dict():
    # 后期补充预测功能
    pass

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Time Series forecast')
    parser.add_argument('-model', type=str, default='LSTM-GRU', help="模型持续更新")
    parser.add_argument('-window_size', type=int, default=48, help="时间窗口大小, window_size > pre_len")
    parser.add_argument('-pre_len', type=int, default=24, help="预测未来数据长度")
    # data
    parser.add_argument('-shuffle', action='store_true', default=True, help="是否打乱数据加载器中的数据顺序")
    parser.add_argument('-data_path', type=str, default='ETTh1.csv', help="你的数据数据地址")
    parser.add_argument('-target', type=str, default='OT', help='你需要预测的特征列,这个值会最后保存在csv文件里')
    parser.add_argument('-input_size', type=int, default=7, help='你的特征个数不算时间那一列')
    parser.add_argument('-feature', type=str, default='MS', help='[M, S, MS],多元预测多元,单元预测单元,多元预测单元')
    # learning
    parser.add_argument('-lr', type=float, default=0.001, help="学习率")
    parser.add_argument('-drop_out', type=float, default=0.05, help="随机丢弃概率,防止过拟合")
    parser.add_argument('-epochs', type=int, default=15, help="训练轮次")
    parser.add_argument('-batch_size', type=int, default=128, help="批次大小")
    parser.add_argument('-save_path', type=str, default='models')

    # model
    parser.add_argument('-hidden-size', type=int, default=64, help="隐藏层单元数")
    parser.add_argument('-kernel-sizes', type=str, default='3')
    # device
    parser.add_argument('-use_gpu', type=bool, default=False)
    parser.add_argument('-device', type=int, default=0, help="只设置最多支持单个gpu训练")

    # option
    parser.add_argument('-train', type=bool, default=True)
    parser.add_argument('-predict', type=bool, default=True)
    parser.add_argument('-lr-scheduler', type=bool, default=True)
    args = parser.parse_args()

    if isinstance(args.device, int) and args.use_gpu:
        device = torch.device("cuda:" + f'{args.device}')
    else:
        device = torch.device("cpu")

    # 读取数据地址,创建数据加载器
    train_loader, test_loader, valid_loader, scaler = create_dataloader(args, device)

    # 实例化模型
    model = LSTM_GRU(args, device).to(device)

    # 训练模型
    if args.train:
        print(f">>>>>>>>>>>>>>>>>>>>>>>>>开始{args.model}模型训练<<<<<<<<<<<<<<<<<<<<<<<<<<<")
        train(model, args, device, scaler)
    if args.predict:
        print(f">>>>>>>>>>>>>>>>>>>>>>>>>预测未来{args.pre_len}条数据<<<<<<<<<<<<<<<<<<<<<<<<<<<")
        pre_dict()

5.2 模型训练 

当我们通过章节四配置好所有的参数之后,我们就可以运行我们创建的py文件了,控制台就会进行训练,输出如下内容->

5.3 模型预测 

下面的图片是模型在测试集上的表现, 可以看到效果还可以吧只能说一般,毕竟这两个结构单元只是最普通的,也没有在其中加入任何的其它高等级机制。

5.4 结果分析

当我们预测完成之后,会进行测试集验证同时会输出测试集的表现情况,后期我会添加个绘图功能在这里。 

 

六、全文总结

到此本文已经全部讲解完成了,希望能够帮助到大家,在这里也给大家推荐一些我其它的博客的时间序列实战案例讲解,其中有数据分析的讲解就是我前面提到的如何设置参数的分析博客,最后希望大家订阅我的专栏,本专栏均分文章均分98,并且免费阅读。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/170116.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

铝合金钻孔铣削去毛刺加工之高速电主轴解决方案

铝合金是一种轻质、高强度的材料&#xff0c;其出色的机械性能和良好的导电性、导热性使其在工业领域广受青睐特别是在航空、航天和汽车制造中&#xff0c;铝合金的身影更是随处可见。在铝合金加工过程中&#xff0c;高速电主轴可精准而高效地完成钻孔、铣削和去毛刺等任务&…

贪吃蛇游戏制作

首先在ecilsp里面创建两个包&#xff0c;启动和图形界面 在创建一个文件夹用来放图片 1.绘制图形界面 package com.snaketuxing.view;import java.awt.Color; import java.awt.EventQueue; import java.awt.Font; import java.awt.Frame; import java.awt.Graphics; import …

go语言的某些开发素质真低,完全就是缺教养。

我本人在github提过一个错误处理的提案&#xff0c;2023年11月20日微信公众号“脑子进煎鱼了” 记录了这个提案&#xff0c;在评论区有个微信名为&#xff1a;【hello哥已开始躺平】的微信用户一来就喷粪&#xff0c;这种人到底是欠打呢还是心理变态呢&#xff1f;对别人的提案…

docker更换国内源

docker更换国内源 1、编辑Docker配置文件 在终端中执行以下命令&#xff0c;编辑Docker配置文件&#xff1a; vi /etc/docker/daemon.json2、添加更新源 在打开的配置文件中&#xff0c;添加以下内容&#xff1a; {"registry-mirrors": ["https://hub-mirror…

yum 搭建仓库 http/ftp

目录 http ftp http 服务端 1. 下载 httpd 服务&#xff0c;记得将防火墙和安全终端全部关掉 2. 开启 httpd 服务 3. 临时挂载 客户端 1. 下载 httpd 服务&#xff0c;记得将防火墙和安全终端全部关掉 2. 开启 httpd 服务 3. 进入 /etc/yum.repos.d 4. 新建一个目录 mhy&…

【洛谷 P3743】kotori的设备 题解(二分答案+循环)

kotori的设备 题目背景 kotori 有 n n n 个可同时使用的设备。 题目描述 第 i i i 个设备每秒消耗 a i a_i ai​ 个单位能量。能量的使用是连续的&#xff0c;也就是说能量不是某时刻突然消耗的&#xff0c;而是匀速消耗。也就是说&#xff0c;对于任意实数&#xff0c;…

Vue3 源码解读系列(九)——依赖注入

依赖注入 依赖注入用于祖先组件向后代组件传递数据。 特点&#xff1a; 祖先组件不需要知道哪些后代组件在使用它提供的数据。 后代组件也不需要知道注入的数据来自哪里。 /*** provide 的实现*/ function provide(key, value) {let provides currentInstance.provides // 当…

【Linux】软连接和硬链接:创建、管理和解除链接的操作

文章目录 1. 软链接和硬链接简介2. Linux软链接使用方法3. Linux硬链接使用方法4. 总结 1. 软链接和硬链接简介 什么是软链接 软链接(Symbolic Link),也称为符号链接,是包含了源文件位置信息的特殊文件。它的作用是间接指向一个文件或目录。如果软链接的源文件被删除或移动了,软…

【论文阅读笔记】Deep learning for time series classification: a review

【论文阅读笔记】Deep learning for time series classification: a review 摘要 在这篇文章中&#xff0c;作者通过对TSC的最新DNN架构进行实证研究&#xff0c;探讨了深度学习算法在TSC中的当前最新性能。文章提供了对DNNs在TSC的统一分类体系下在各种时间序列领域中的最成功…

智慧化工园区信息化整体解决方案:PPT全53页,附下载

关键词&#xff1a;智慧化工园区建设方案&#xff0c;智慧化工园区建设规范&#xff0c;智慧化工园区建设指南 一、售智慧化工园区建设背景 随着工业化、信息化和数字化进程的加速&#xff0c;化工园区面临着越来越多的挑战&#xff0c;如安全生产、环境保护、能源消耗等问题…

[架构之路-247]:目标系统 - 设计方法 - 软件工程 - 结构化方法的基本思想、本质、特点以及在软件开发、在生活中的应用

目录 前言&#xff1a; 一、什么是非结构化方法 1.1 什么是非结构化方法 1.2 非结构化方法的适用场合 二、什么是结构化方法 1.1 结构化方法诞生的背景&#xff1a;软件规模发展&#xff1a;大规模、复杂系统的需要 1.2 概述 1.3 主要特点与核心思想 三、结构化方法在…

【C#二开业务冠邑】通过界面查看数据来源

前言 重构框架&#xff08;CS【C#】转BS【Java】&#xff09;时&#xff0c;突然发现公司的代码和数据库&#xff0c;有部分都没有写注释&#xff0c;嘎嘎&#xff0c;这不非常影响开发效率&#xff0c;于是乎&#xff0c;开始帮公司整理表结构和数据来源&#xff0c;也从而加…

ISP--Black Level Correction(黑电平矫正)

图像的每一个像素点都是由一个光电二极管控制的&#xff0c;由二极管将电信号&#xff0c;转换为数字信号。 那么&#xff0c;我们知道了&#xff0c;图像的像素值是与电信号强度相关的。但是&#xff0c;我们得知道&#xff0c;每一个光电二极管要想工作&#xff0c;都得有一定…

异步爬取+多线程+redis构建一个运转丝滑且免费http-ip代理池 (三)

内容提要: 如果说,爬取网页数据的时候,我们使用了异步,那么将数据放入redis里面,其实也需要进行异步;当然,如果使用多线程或者redis线程池技术也是可以的,但那会造成冗余; 因此,在测试完多线程redis搭配异步爬虫的时候,我发现效率直接在redis这里被无限拉低下来! 因此: 最终的r…

集合的自反关系和对称关系

集合的自反关系和对称关系 一&#xff1a;集合的自反关系1&#xff1a;原理&#xff1a;2&#xff1a;代码实现 二&#xff1a;对称关系1&#xff1a;原理&#xff1a;2&#xff1a;代码实现 三&#xff1a;总结 一&#xff1a;集合的自反关系 1&#xff1a;原理&#xff1a; …

【电路笔记】-星三角变换(Star-Delta Transformation)

星三角变换&#xff08;Star-Delta Transformation&#xff09; 文章目录 星三角变换&#xff08;Star-Delta Transformation&#xff09;1、概述1.1 单相配置1.2 多相配置 2、三相连接2.1 Y配置2.2 Δ配置 3、Y-Δ 和 Δ-Y 变换3.1 Y-Δ变换3.2 Δ-Y变换3.3 应用 4、总结 本文…

springboot中动态api如何设置

1.不需要编写controller 等mvc层&#xff0c;通过接口动态生成api。 这个问题&#xff0c;其实很好解决&#xff0c;以前编写接口&#xff0c;是要写controller&#xff0c;需要有 RestController RequestMapping("/test1") public class xxxController{ ApiOperat…

【C++上层应用】1. 异常处理

文章目录 【 1. C的标准异常 】【 2. 异常转移处理 】2.1 throw 抛出异常2.2 try 捕获异常2.3 catch 捕获异常2.4 实例 【 3. 定义新的异常 】 异常是程序在执行期间产生的问题&#xff0c;比如编译报错、链接错误等。 【 1. C的标准异常 】 C 提供了一系列标准的异常&#xf…

逐字节讲解 Redis 持久化(RDB 和 AOF)的文件格式(一)

前言 相信各位对 Redis 的这两种持久化机制都不陌生&#xff0c;简单来说&#xff0c;RDB 就是对数据的全量备份&#xff0c;AOF 则是增量备份&#xff0c;而从 4.0 版本开始引入了混合方式&#xff0c;以 7.2.3 版本为例&#xff0c;会生成三类文件&#xff1a;RDB、AOF 和记…

音视频同步笔记 - 以音频时间为基

音视频同步 - 以音频时间为基 上图介绍&#xff1a; 该图是以音频的时间为基&#xff0c;对视频播放时间的延迟控制方案&#xff0c;只调整视频的播放延时。delayTime是视频播放的延迟时间&#xff0c;初始值是1 / FPS * 1000 (ms)&#xff0c;如果FPS为25帧率&#xff0c;初始…