共享内存和信号量的配合机制

进程之间共享内存的机制,有了这个机制,两个进程可以像访问自己内存中的变量一样,访问共享内存的变量。但是同时问题也来了,当两个进程共享内存了,就会存在同时读写的问题,就需要对于共享的内存进行保护,就需要信号量这样的同步协调机制。

对于共享内存的操作,首先,创建之前,我们要有一个 key 来唯一标识这个共享内存。这个 key 可以根据文件系统上的一个文件的 inode 随机生成。

然后,我们需要创建一个共享内存,就像创建一个消息队列差不多,都是使用 xxxget 来创建。其中,创建共享内存使用的是下面这个函数:

int shmget(key_t key, size_t size, int shmflag);

其中,key 就是前面生成的那个 key,shmflag 如果为 IPC_CREAT,就表示新创建,还可以指定读写权限 0777。

对于共享内存,需要指定一个大小 size,这个一般要申请多大呢?一个最佳实践是,我们将多个进程需要共享的数据放在一个 struct 里面,然后这里的 size 就应该是这个 struct 的大小。这样每一个进程得到这块内存后,只要强制将类型转换为这个 struct 类型,就能够访问里面的共享数据了。

在这里,我们定义了一个 struct shm_data 结构。这里面有两个成员,一个是一个整型的数组,一个是数组中元素的个数。

生成了共享内存以后,接下来就是将这个共享内存映射到进程的虚拟地址空间中。我们使用下面这个函数来进行操作。

void *shmat(int  shm_id, const  void *addr, int shmflg);

这里面的 shm_id,就是上面创建的共享内存的 id,addr 就是指定映射在某个地方。如果不指定,则内核会自动选择一个地址,作为返回值返回。得到了返回地址以后,我们需要将指针强制类型转换为 struct shm_data 结构,就可以使用这个指针设置 data 和 datalength 了。

当共享内存使用完毕,我们可以通过 shmdt 解除它到虚拟内存的映射。

int shmdt(const  void *shmaddr);

信号量以集合的形式存在的。

首先,创建之前,我们同样需要有一个 key,来唯一标识这个信号量集合。这个 key 同样可以根据文件系统上的一个文件的 inode 随机生成。

然后,我们需要创建一个信号量集合,同样也是使用 xxxget 来创建,其中创建信号量集合使用的是下面这个函数。

int semget(key_t key, int nsems, int semflg);

这里面的 key,就是前面生成的那个 key,shmflag 如果为 IPC_CREAT,就表示新创建,还可以指定读写权限 0777。

这里,nsems 表示这个信号量集合里面有几个信号量,最简单的情况下,我们设置为 1。

对于信号量,往往要定义两种操作,P 操作和 V 操作。对应上面代码中 semaphore_p 函数和 semaphore_v 函数,semaphore_p 会调用 semop 函数将信号量的值减一,表示申请占用一个资源,当发现当前没有资源的时候,进入等待。semaphore_v 会调用 semop 函数将信号量的值加一,表示释放一个资源,释放之后,就允许等待中的其他进程占用这个资源。

可以用这个信号量,来保护共享内存中的 struct shm_data,使得同时只有一个进程可以操作这个结构。

共享内存和信号量的配合机制,如下图所示:

  • 无论是共享内存还是信号量,创建与初始化都遵循同样流程,通过 ftok 得到 key,通过 xxxget 创建对象并生成 id;
  • 生产者和消费者都通过 shmat 将共享内存映射到各自的内存空间,在不同的进程里面映射的位置不同;
  • 为了访问共享内存,需要信号量进行保护,信号量需要通过 semctl 初始化为某个值;
  • 接下来生产者和消费者要通过 semop(-1) 来竞争信号量,如果生产者抢到信号量则写入,然后通过 semop(+1) 释放信号量,如果消费者抢到信号量则读出,然后通过 semop(+1) 释放信号量;
  • 共享内存使用完毕,可以通过 shmdt 来解除映射。

此文章为11月Day20学习笔记,内容来源于极客时间《趣谈Linux操作系统》,推荐该课程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/169605.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

-bash: jps: command not found

背景 服务器的jdk通过yum 安装的,要用jps查询pid,提示找不到命令 yum install -y java-1.8.0-openjdk.x86_64 一、jps命令无法找到 [devhgh-tob-hsbc-dev-003 ~]$ jps -bash: jps: command not found 二、检查基础Java环境 [devhgh-tob-hsbc-dev-003 ~]…

OTP语音芯片 NV080D在智能空气检测仪的应用

随着人们对健康和环保的关注度不断提高,人们对看不见的家居环境也越来越重视。智能空气检测仪的市场需求也在不断增长中,呈现稳中向好的趋势。智能空气检测仪能够检测室内空气中的PM2.5、甲醛、TVOC等有害物质,同时还可以检测温湿度、空气质量…

进程管理(五)

处理器调度及多级调度 批量型往往先进入外存,再进入内存。终端型直接进入内存。 从磁盘选择若干作业,同时装入到内存,创建相应的进程,这是高级调度。 低级调度(进程调度):从进入内存的多道程序中选择一道把处理机给他 注意:时间片轮转是抢占式的 外设的调度统称为…

达索系统3DEXPERIENCE云端设计新体验

云是现代生活中必不可少的工具,在云端进行数据传输避免了传统的文件传输方式,更加方便快捷,节约了工作时间。 01 云端平台升级 在日常工作中有什么独特优势 在我们的生活工作中,云越来越多被提起,比如云计算、云服务…

网络工程师-HCIA网课视频学习

这里是速成的,只积累下,自己未曾学习到的东西。通过书本补充知识点。 视频:hcia17-链路聚合_哔哩哔哩_bilibili hcia16-路由高级特性: hcia17-链路聚合: 由于如果根据视频来学习的话,感觉视频的总结并不…

正则表达式在UI自动化中的秒用!

正则表达式在UI自动化中的秒用 正则表达式是一种用于匹配文本的强大工具,它可以用来搜索、替换和分析文本,也可以应用到「UI自动化中元素的定位中」。 接下来先看我们出错的代码,如下 poco("附近 第 1 个标签,共 3 个"…

设计模式-迭代器模式-笔记

动机(Motivaton) 在软件构建过程中,集合对象内部结构常常变化各异。但对于这些集合对象,我们呢希望在不暴露其内部结构的同时,可以让外部客户代码透明地访问其中包含的元素;同时这种“透明遍历”也为“同一…

力扣刷题-二叉树-二叉树的高度与深度

二叉树最大深度 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3 递归法 本题可以使用前序(中左…

2024中国人民大学计算机考研分析

24计算机考研|上岸指南 中国人民大学 中国人民大学计算机考研招生学院是信息学院。目前均已出拟录取名单。 中国人民大学在1978年创立了经济信息管理系,它是国内最早建立的将数学与信息技术在经济管理领域应用为特色的系科。1986年,在原系计算站的基础…

一段来自《Verilog HDL 高级数字设计》的错误Verilog代码

笔者之前在阅读《Verilog HDL 高级数字设计》时的基4布斯乘法器一文时,就遇到了一段有问题的代码,而这个问题可以用Verilog基础:表达式位宽的确定(位宽拓展)文中的分析完美解决。 always (negedge clock) if (Start)…

认识前端包常用包管理工具(npm、cnpm、pnpm、nvm、yarn)

随着前端的快速发展,前端的框架越来越趋向于工程化,所以对于包的使用也越来越多,为了优化性能和后期的维护更新,对于前端包的管理也尤为重要,本文主要阐述对node中包管理工具的理解和简单的使用方法。也欢迎各位大佬和同行们多多指教。😁😁😁 👉1. npm 安装npm 通…

城市生命线丨桥梁健康监测系统应用详情

现代城市当中,桥梁的重要性以及危险性是最高的,因此,对于桥梁的安全健康监测就会变得更加的重要,在科技发展的今天,新型基础设施已经能够准确、实时的监测桥梁的安全和健康。 WITBEE万宾助力建设更健康,智慧…

gRPC 四模式之 服务器端流RPC模式

服务器端流RPC模式 在一元 RPC 模式中,gRPC 服务器端和 gRPC 客户端在通信时始终只有一个请求和一个响应。在服务器端流 RPC 模式中,服务器端在接收到客户端的请求消息后,会发回一个响应的序列。这种多个响应所组成的序列也被称为“流”。在…

力扣刷题-二叉树-二叉树最小深度

给定一个二叉树,找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明:叶子节点是指没有子节点的节点。(注意题意) 示例 1: 输入:root [3,9,20,null,null,15,7] 输出&#x…

PC3392H高性价方案比10V-120V输入1.5A大电输出内置MOS管带EN功能实现零功耗使能只需极少元器件

1.PC3392H 特性  通过使能脚关断实现零功耗  宽电压输入范围 10V 至 120V  最大输出电流 1.5A  集成功率 MOS 管  外围器件少  输出短路保护  温度保护  逐周期限流  输出电压灵活可靠  ESOP8 2. 描述 PC3392H 一款宽电压范围降压型 DC-DC 电源…

Matplotlib实现Label及Title都在下方的最佳姿势

Matplotlib实现Label及Title都在下方的最佳姿势 1. 问题背景2. 基本思想(可以不看)3. 方法封装4. 调用实例5. 总结6. 起飞 1. 问题背景 用python绘制下面这种图的时候,一般用xlable作为子图的标题,这是因为plt.title()方法绘制的…

YOLO目标检测——无人机航拍输电线路绝缘瓷瓶数据集下载分享【对应voc、coco和yolo三种格式标签】

实际项目应用:电力系统运维、状态监测与故障诊断、智能电网建设等领域数据集说明:无人机航拍输电线路绝缘瓷瓶数据集,真实场景的高质量图片数据,数据场景丰富标签说明:使用lableimg标注软件标注,标注框质量…

深入理解 pytest Fixture 方法及其应用!

当涉及到编写自动化测试时,测试框架和工具的选择对于测试用例的设计和执行非常重要。在Python 中,pytest是一种广泛使用的测试框架,它提供了丰富的功能和灵活的扩展性。其中一个很有用的功 能是fixture方法,它允许我们初始化测试环…

车牌识别 支持12种中文车牌类型 车牌数据集下载

开源代码 如果觉得有用,不妨给个Star⭐️🌟支持一下吧~ 谢谢! Acknowledgments & Contact 1.WeChat ID: cbp931126 2.QQ Group:517671804 加微信(备注:PlateAlgorithm),进讨论群可以获得10G大小的车牌检测和识…

Python 如何使用 MySQL 8.2 读写分离?

在这篇文章中,我们将了解如何将 MySQL 8.2 的读写分离功能与 MySQL-Connector/Python 一起使用。 作者:Frederic Descamps,MySQL 社区经理 本文和封面来源:https://blogs.oracle.com/,爱可生开源社区翻译。 本文约 120…