一段来自《Verilog HDL 高级数字设计》的错误Verilog代码

        笔者之前在阅读《Verilog HDL 高级数字设计》时的基4布斯乘法器一文时,就遇到了一段有问题的代码,而这个问题可以用Verilog基础:表达式位宽的确定(位宽拓展)文中的分析完美解决。

always @ (negedge clock) 
    if (Start) begin  
      expected_value = 0;  
      case({word1[word_size-1], word2[word_size-1]})
        0: begin expected_value = word1 * word2; expected_mag = expected_value; end
        1: begin expected_value = word1*  {`All_Ones,word2[word_size-1:0]}; 
            expected_mag = 1 + ~(expected_value); end
        2: begin expected_value = {`All_Ones, word1[word_size-1:0]} *word2;
            expected_mag = 1 + ~(expected_value); end 
        3: begin expected_value = ({`All_Zeros, 1 + ~word2[word_size-1:0]}) * ({`All_Zeros, 1 + ~word1[word_size-1:0]});
            expected_mag = expected_value; end
      endcase

        上面的代码片作用是根据word1和word2的不同算出乘积结果的数值大小和结果的数值绝对值大小。即当两个数都是负数时,即case 3,对两个数都整体取反加一变成正数(对于一个补码,获取其相反数补码的操作是对整体取反加一,包括符号位),然后相乘获得结果。但是里面存在问题,就是word的片选在取反之前会先补零拓展至32位,因为不带位宽的1是32位的,根据位宽拓展原则+和~这两个操作符都是上下文决定操作符,因此会先将word2[word_size-1:0]补零拓展(任何信号的片选都是无符号数)至32位,此时再取反就会变成一个很大的正数,因此会出错。

        对于比如8位有符号数-128和-127,按照上面转换后理想情况是128*127,但是因为错误的位宽拓展,结果变成了4294967168*4294967167。

        解决这个问题的方法很简单,将1改成1'b1即可阻止不必要的位宽拓展,或者用{}拼接操作符包围~word2[word_size-1:0],因为所有在{}符号内的操作数都会变成自决定操作数,位宽由自己决定而不加入上下文环境中,如下所示的为正确的代码。

always @ (negedge clock) 
    if (Start) begin  
      expected_value = 0;  
      case({word1[word_size-1], word2[word_size-1]})
        0: begin expected_value = word1 * word2; expected_mag = expected_value; end
        1: begin expected_value = word1*  {`All_Ones,word2[word_size-1:0]}; 
            expected_mag = 1'b1 + {~(expected_value)}; end
        2: begin expected_value = {`All_Ones, word1[word_size-1:0]} *word2;
            expected_mag = 1'b1 + {~(expected_value)}; end 
        3: begin expected_value = ({`All_Zeros, 1'b1 + {~word2[word_size-1:0]}}) * ({`All_Zeros, 1'b1 + {~word1[word_size-1:0]}});
            expected_mag = expected_value; end
      endcase

        上面的代码中,两种改正措施都实现了,实际上只需要其中一种即可。更多关于Verilog表达式位宽拓展和符号拓展相关的问题,可以查看下面的文章。

Verilog基础:表达式位宽的确定(位宽拓展)icon-default.png?t=N7T8https://blog.csdn.net/weixin_45791458/article/details/128772558?spm=1001.2014.3001.5502Verilog基础:表达式符号的确定icon-default.png?t=N7T8https://blog.csdn.net/weixin_45791458/article/details/128840843?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/169583.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

认识前端包常用包管理工具(npm、cnpm、pnpm、nvm、yarn)

随着前端的快速发展,前端的框架越来越趋向于工程化,所以对于包的使用也越来越多,为了优化性能和后期的维护更新,对于前端包的管理也尤为重要,本文主要阐述对node中包管理工具的理解和简单的使用方法。也欢迎各位大佬和同行们多多指教。😁😁😁 👉1. npm 安装npm 通…

城市生命线丨桥梁健康监测系统应用详情

现代城市当中,桥梁的重要性以及危险性是最高的,因此,对于桥梁的安全健康监测就会变得更加的重要,在科技发展的今天,新型基础设施已经能够准确、实时的监测桥梁的安全和健康。 WITBEE万宾助力建设更健康,智慧…

gRPC 四模式之 服务器端流RPC模式

服务器端流RPC模式 在一元 RPC 模式中,gRPC 服务器端和 gRPC 客户端在通信时始终只有一个请求和一个响应。在服务器端流 RPC 模式中,服务器端在接收到客户端的请求消息后,会发回一个响应的序列。这种多个响应所组成的序列也被称为“流”。在…

力扣刷题-二叉树-二叉树最小深度

给定一个二叉树,找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明:叶子节点是指没有子节点的节点。(注意题意) 示例 1: 输入:root [3,9,20,null,null,15,7] 输出&#x…

PC3392H高性价方案比10V-120V输入1.5A大电输出内置MOS管带EN功能实现零功耗使能只需极少元器件

1.PC3392H 特性  通过使能脚关断实现零功耗  宽电压输入范围 10V 至 120V  最大输出电流 1.5A  集成功率 MOS 管  外围器件少  输出短路保护  温度保护  逐周期限流  输出电压灵活可靠  ESOP8 2. 描述 PC3392H 一款宽电压范围降压型 DC-DC 电源…

Matplotlib实现Label及Title都在下方的最佳姿势

Matplotlib实现Label及Title都在下方的最佳姿势 1. 问题背景2. 基本思想(可以不看)3. 方法封装4. 调用实例5. 总结6. 起飞 1. 问题背景 用python绘制下面这种图的时候,一般用xlable作为子图的标题,这是因为plt.title()方法绘制的…

YOLO目标检测——无人机航拍输电线路绝缘瓷瓶数据集下载分享【对应voc、coco和yolo三种格式标签】

实际项目应用:电力系统运维、状态监测与故障诊断、智能电网建设等领域数据集说明:无人机航拍输电线路绝缘瓷瓶数据集,真实场景的高质量图片数据,数据场景丰富标签说明:使用lableimg标注软件标注,标注框质量…

深入理解 pytest Fixture 方法及其应用!

当涉及到编写自动化测试时,测试框架和工具的选择对于测试用例的设计和执行非常重要。在Python 中,pytest是一种广泛使用的测试框架,它提供了丰富的功能和灵活的扩展性。其中一个很有用的功 能是fixture方法,它允许我们初始化测试环…

车牌识别 支持12种中文车牌类型 车牌数据集下载

开源代码 如果觉得有用,不妨给个Star⭐️🌟支持一下吧~ 谢谢! Acknowledgments & Contact 1.WeChat ID: cbp931126 2.QQ Group:517671804 加微信(备注:PlateAlgorithm),进讨论群可以获得10G大小的车牌检测和识…

Python 如何使用 MySQL 8.2 读写分离?

在这篇文章中,我们将了解如何将 MySQL 8.2 的读写分离功能与 MySQL-Connector/Python 一起使用。 作者:Frederic Descamps,MySQL 社区经理 本文和封面来源:https://blogs.oracle.com/,爱可生开源社区翻译。 本文约 120…

Yolov8部署——vs2019遇到的问题

Yolov8部署——vs2019遇到的问题 问题一: 默认库"LIBCMT"与其他库的使用冲突 解决方法:选择自己的项目右键属性——c/c——代码生成——运行库(多线程(/MT) 问题二: 文件包含在偏移0x18处开始…

若依框架的介绍与基本使用(一起走进若依框架的世界)

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是君易--鑨,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的博客专栏《若依框架开发》。🎯🎯 &…

【MySQL】聚合函数、group by、update、delete

聚合函数、group by、update、delete 前言正式开始update将孙悟空同学的数学成绩变更为 80 分将曹孟德同学的数学成绩变更为 60 分,语文成绩变更为 70 分将总成绩倒数前三的 3 位同学的数学成绩加上 30 分将所有同学的语文成绩更新为原来的 2 倍 delete删除孙悟空同…

trzsz支持文件拖动到终端进行上传,类似lrzsz

考虑到 LapTop -> Host 1 -> Host 2 -> Docker -> TMUX,使用scp或sftp命令不方便;使用rz和sz命令就会方便很多,但是却又与 TMUX 不兼容(备注:Tmux是一个终端复用工具,允许用户在一个终端窗口中…

C语言前瞻

文章目录 C语言基础简介编译方式分布编译示例流程一步编译 代码运行运行结果展示实际代码 C语言基础简介 关于C语言的书籍,文章有很多。C的历史我不赘述,只讲C语言的基础语法和使用,帮助大家入门,同时也是自己学习过程的一个回顾。…

Python的os.path.join()详解

当你需要构建文件路径时,os.path.join() 是一个很有用的方法。这个方法会根据你的操作系统使用正确的路径分隔符(例如,在 Windows 上是反斜杠 \,在类 Unix 系统上是正斜杠 /)来连接路径中的各个部分。这样你就可以确保…

想要成为CSS大师?这些技巧是你必须知道的!

前言 CSS 是网页设计中不可或缺的一部分,掌握一些实用的 CSS 技巧,可以让你在设计中展现出更多的创意和个性。本文将介绍一些 CSS 技巧,帮助你提升自己的技能,成为一个真正的 CSS 大师。 1. 改变 input 自动填充的背景颜色 这段 …

获取阿里云Docker镜像加速器

1、阿里云官网(www.aliyun.com)注册账号 2、打开“控制台首页” 控制台首页地址:https://home.console.aliyun.com/home/dashboard/ProductAndService 3、点击“概览->容器镜像服务 ACR” 4、打开“镜像工具->镜像加速器”页面&#x…

数据集笔记:NGSIM (next generation simulation)

1 数据集介绍 数据介绍s Next Generation Simulation (NGSIM) Open Data (transportation.gov) 数据地址:Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data | Department of Transportation - Data Portal 时间2005年到2006年间地…

【Linux】 线程

pthread_join: 获取线程返回值 #include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <unistd.h> #include <string.h>/*** 测试 pthread_join* 阻塞等待一个子线程的退出&#xff0c;可以接收到某一个子线程调用pthread_ex…