打卡记录
相邻字符不同的最长路径(树状DP)
链接
若节点也存在父节点的情况下,传入父节点参数,若是遍历到父节点,直接循环里 continue。
class Solution:
def longestPath(self, parent: List[int], s: str) -> int:
n = len(parent)
g = [[] for _ in range(n)]
for i in range(1, n): g[parent[i]].append(i)
ans = 0
def dfs(x):
nonlocal ans
max_len = 0
for y in g[x]:
length = dfs(y) + 1
if s[x] != s[y]:
ans = max(ans, max_len + length)
max_len = max(max_len, length)
return max_len
dfs(0)
return ans + 1
三个无重叠子数组的最大和(滑动窗口)
链接
分段处理,类似于股票问题的一种解法,把前面出现的最大值保存下来留给后面计算来使用,这样可以避免重叠出现。
class Solution:
def maxSumOfThreeSubarrays(self, nums: List[int], k: int) -> List[int]:
ans = []
sum1, maxSum1, maxSum1Idx = 0, 0, 0
sum2, maxSum12, maxSum12Idx = 0, 0, ()
sum3, maxTotal = 0, 0
for i in range(k * 2, len(nums)):
sum1 += nums[i - k * 2]
sum2 += nums[i - k]
sum3 += nums[i]
if i >= k * 3 - 1:
if sum1 > maxSum1:
maxSum1 = sum1
maxSum1Idx = i - k * 3 + 1
if maxSum1 + sum2 > maxSum12:
maxSum12 = maxSum1 + sum2
maxSUm12Idx = (maxSum1Idx, i - k * 2 + 1)
if maxSum12 + sum3 > maxTotal:
maxTotal = maxSum12 + sum3
ans = [*maxSUm12Idx, i - k + 1]
sum1 -= nums[i - k * 3 + 1]
sum2 -= nums[i - k * 2 + 1]
sum3 -= nums[i - k + 1]
return ans
三个无重叠子数组的最大和(动态规划)
链接
DP解法的难点在于如何回溯动态规划后的坐标,而且要保持字典序最小。
class Solution:
def maxSumOfThreeSubarrays(self, nums: List[int], k: int) -> List[int]:
n = len(nums)
s = list(accumulate(nums, initial=0))
f = [[0] * 4 for _ in range(n + 2)]
for i in range(n - k + 1, 0, -1):
for j in range(1, 4):
f[i][j] = max(f[i + 1][j], f[i + k][j - 1] + s[i + k - 1] - s[i - 1])
ans = [0] * 3
i, j, idx = 1, 3, 0
while j > 0:
if f[i + 1][j] > f[i + k][j - 1] + s[i + k - 1] - s[i - 1]: i += 1
else:
ans[idx] = i - 1
idx += 1
i += k
j -= 1
return ans