YOLOv8改进 | EIoU、SIoU、WIoU、DIoU、FoucsIOU等二十余种损失函数

一、本文介绍

这篇文章介绍了YOLOv8的重大改进,特别是在损失函数方面的创新。它不仅包括了多种IoU损失函数的改进和变体,如SIoU、WIoU、GIoU、DIoU、EIOU、CIoU,还融合了“Focus”思想,创造了一系列新的损失函数。这些组合形式的损失函数超过了二十余种,每种都针对特定的目标检测挑战进行优化。文章会详细探讨这些损失函数如何提高YOLOv8在各种检测任务中的性能,包括提升精度、加快收敛速度和增强模型对复杂场景的适应性。本文章主要是为了发最近新出的Inner思想改进的各种EIoU的文章服务,其中我经过实验在绝大多数下的效果都要比本文中提到的各种损失效果要好。 

InnerIoU: YOLOv8改进 | 2023 | InnerIoU、InnerSIoU、InnerWIoU、Foucs等损失函数

专栏回顾: YOLOv8改进有效涨点专栏->持续复现各种最新机制

本位代码地址: 文末提供完整代码块-包括EIoU、CIoU、DIoU等七种损失和其Focus变种

目录

一、本文介绍

二、各种损失函数的基本原理 

2.1 交集面积和并集面积

2.2 IoU

2.3 SIoU

2.4 WioU

2.5 GIoU

2.6 DIoU

2.7 EIoU

2.8 CIoU

2.9 FocusLoss 

三、EIoU、SIoU、EIoU、FocusIoU等损失函数代码块

3.1 代码一

3.2 代码二 

四、添加EIoU、SIoU、EIoU、FocusIoU等损失函数到模型中

五、总结


 二、各种损失函数的基本原理 

2.1 交集面积和并集面积

在理解各种损失函数之前我们需要先来理解一下交集面积和并集面积,在数学中我们都学习过集合的概念,这里的交集和并集的概念和数学集合中的含义是一样的。

2.2 IoU

论文地址:IoU Loss for 2D/3D Object Detectio

适用场景:普通的IoU并没有特定的适用场景

概念: 测量预测边界框和真实边界框之间的重叠度(最基本的边界框损失函数,后面的都是居于其进行计算)。

2.3 SIoU

论文地址:SIoU: More Powerful Learning for Bounding Box Regression

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。

概念: SIoU损失通过融入角度考虑和规模敏感性,引入了一种更为复杂的边界框回归方法,解决了以往损失函数的局限性,SIoU损失函数包含四个组成部分:角度损失、距离损失、形状损失和第四个未指定的组成部分。通过整合这些方面,从而实现更好的训练速度和预测准确性。

2.4 WioU

论文地址WIoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism

适用场景:适用于需要动态调整损失焦点的情况,如不均匀分布的目标或不同尺度的目标检测。

概念:引入动态聚焦机制的IoU变体,旨在改善边界框回归损失。

2.5 GIoU

论文地址:GIoU: A Metric and A Loss for Bounding Box Regression

适用场景:适合处理有重叠和非重叠区域的复杂场景,如拥挤场景的目标检测。

概念: 在IoU的基础上考虑非重叠区域,以更全面评估边界框

2.6 DIoU

论文地址:DIoU: Faster and Better Learning for Bounding Box Regression

适用场景:适用于需要快速收敛和精确定位的任务,特别是在边界框定位精度至关重要的场景。

概念:结合边界框中心点之间的距离和重叠区域。

2.7 EIoU

论文地址:EIoU:Loss for Accurate Bounding Box Regression

适用场景:可用于需要进一步优化边界框对齐和形状相似性的高级场景。

概念:EIoU损失函数的核心思想在于提高边界框回归的准确性和效率。它通过以下几个方面来优化目标检测:

1. 增加中心点距离损失:通过最小化预测框和真实框中心点之间的距离,提高边界框的定位准确性。

2. 考虑尺寸差异:通过惩罚宽度和高度的差异,EIoU确保预测框在形状上更接近真实框。

3. 结合最小封闭框尺寸:将损失函数与包含预测框和真实框的最小封闭框的尺寸相结合,从而使得损失更加敏感于对象的尺寸和位置。

EIoU损失函数在传统IoU基础上增加了这些考量,以期在各种尺度上都能获得更精确的目标定位,尤其是在物体大小和形状变化较大的场景中。

2.8 CIoU

论文地址:CIoU:Enhancing Geometric Factors in Model Learning

适用场景:适合需要综合考虑重叠区域、形状和中心点位置的场景,如复杂背景或多目标跟踪。

概念:综合考虑重叠区域、中心点距离和长宽比。

2.9 FocusLoss 

论文地址:Focal Loss for Dense Object Detection

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。 

Focal Loss由Kaiming He等人在论文《Focal Loss for Dense Object Detection》中提出,旨在解决在训练过程中正负样本数量极度不平衡的问题,尤其是在一些目标检测任务中,背景类别的样本可能远远多于前景类别的样本。

Focal Loss通过修改交叉熵损失,增加一个调整因子这个因子降低了那些已经被正确分类的样本的损失值,使得模型的训练焦点更多地放在难以分类的样本上。这种方式特别有利于提升小目标或者在复杂背景中容易被忽视的目标的检测性能。简而言之,Focal Loss让模型“关注”(或“专注”)于学习那些对提高整体性能更为关键的样本。

三、EIoU、SIoU、EIoU、FocusIoU等损失函数代码块

3.1 代码一

此代码块块的基础版本来源于Github的开源版本,我在其基础上将Inner的思想加入其中形成了各种Inner的思想同时融合各种改良版本的损失函数形成对应版本的InnerIoU、InnerCIoU等损失函数。

import numpy as np
import torch, math

class WIoU_Scale:
    ''' monotonous: {
            None: origin v1
            True: monotonic FM v2
            False: non-monotonic FM v3
        }
        momentum: The momentum of running mean'''
    
    iou_mean = 1.
    monotonous = False
    _momentum = 1 - 0.5 ** (1 / 7000)
    _is_train = True

    def __init__(self, iou):
        self.iou = iou
        self._update(self)
    
    @classmethod
    def _update(cls, self):
        if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
                                         cls._momentum * self.iou.detach().mean().item()
    
    @classmethod
    def _scaled_loss(cls, self, gamma=1.9, delta=3):
        if isinstance(self.monotonous, bool):
            if self.monotonous:
                return (self.iou.detach() / self.iou_mean).sqrt()
            else:
                beta = self.iou.detach() / self.iou_mean
                alpha = delta * torch.pow(gamma, beta - delta)
                return beta / alpha
        return 1

def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):
    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.T

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps
    if scale:
        self = WIoU_Scale(1 - (inter / union))

    # IoU
    # iou = inter / union # ori iou
    iou = torch.pow(inter/(union + eps), alpha) # alpha iou
    if CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        if CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
            rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                with torch.no_grad():
                    alpha_ciou = v / (v - iou + (1 + eps))
                if Focal:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma)  # Focal_CIoU
                else:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
            elif EIoU:
                rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
                rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
                cw2 = torch.pow(cw ** 2 + eps, alpha)
                ch2 = torch.pow(ch ** 2 + eps, alpha)
                if Focal:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIou
                else:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIou
            elif SIoU:
                # SIoU Loss https://arxiv.org/pdf/2205.12740.pdf
                s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps
                s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
                sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
                sin_alpha_1 = torch.abs(s_cw) / sigma
                sin_alpha_2 = torch.abs(s_ch) / sigma
                threshold = pow(2, 0.5) / 2
                sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
                angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)
                rho_x = (s_cw / cw) ** 2
                rho_y = (s_ch / ch) ** 2
                gamma = angle_cost - 2
                distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
                omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)
                omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
                shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
                if Focal:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIou
                else:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIou
            elif WIoU:
                if Focal:
                    raise RuntimeError("WIoU do not support Focal.")
                elif scale:
                    return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051
                else:
                    return iou, torch.exp((rho2 / c2)) # WIoU v1
            if Focal:
                return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma)  # Focal_DIoU
            else:
                return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        if Focal:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdf
        else:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    if Focal:
        return iou, torch.pow(inter/(union + eps), gamma)  # Focal_IoU
    else:
        return iou  # IoU

3.2 代码二 

代码块二此处是使用Focus时候需要修改的代码,如果不适用则不需要修改下面的代码,因为利用Focus机制时候返回的类型是元组所以需要额外的处理。 

        if type(iou) is tuple:
            if len(iou) == 2:
                # Focus Loss 时返回的是元组类型,进行额外处理
                loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sum
            else:
                loss_iou = (iou[0] * iou[1] * weight).sum() / target_scores_sum

        else:
            # 正常的损失函数
            loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum

四、添加EIoU、SIoU、EIoU、FocusIoU等损失函数到模型中

添加的方法和基础版本的各种损失函数的方法是一样的,网上的教程已经满天飞了,考虑到大家有的人已经会了有的人还不会,所以这里提供我的另一篇博客里面包括YOLOv8改进C2f、Conv、Neck、损失函数、Bottleneck、检测头等各种YOLOv8能够改进的地方的详细过程讲解(里面会教会你如何使用上面的代码块一和代码块二)。所以如果你已经会了可以直接跳过此处,如果你还不会我建议你可以看下面的文章我相信能够帮助到你。

修改教程: YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

五、总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

本专栏其它内容(持续更新) 

YOLOv8改进 | DAttention (DAT)注意力机制实现极限涨点

YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

YOLOv8改进 | ODConv附修改后的C2f、Bottleneck模块代码

YOLOv8改进有效涨点系列->手把手教你添加动态蛇形卷积(Dynamic Snake Convolution)

YOLOv8性能评估指标->mAP、Precision、Recall、FPS、IoU

YOLOv8改进有效涨点系列->适合多种检测场景的BiFormer注意力机制(Bi-level Routing Attention)

 YOLOv8改进有效涨点系列->多位置替换可变形卷积(DCNv1、DCNv2、DCNv3) 

详解YOLOv8网络结构/环境搭建/数据集获取/训练/推理/验证/导出/部署

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/166497.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Halcon Solution Guide I basics(1): Guide to Halcon Methods(Halcon解决方案)

文章目录 文章专栏前言文章解读基础解决方案字符串格式化 文章专栏 Halcon开发 前言 今天来看Halcon的第一章内容,Halcon解决方案 文章解读 基础解决方案 Halcon大部分的应用都使用了三种常用的算子应用用于图像的预处理。 Image Acquisition:图像加…

6 Redis的慢查询配置

1、redis的命令执行流程 redis的慢查询只针对步骤3 默认情况下,慢查询的阈值是10ms 在配置文件中进行配置 //这个参数的单位为微秒 //如果将这个值设置为负数,则会禁用慢日志功能 //如果将其设置为0,则会强制记录每个命令 slowlog-log-slow…

[python]python筛选excel表格信息并保存到另一个excel

目录 关键词平台说明背景所需库1.安装相关库2.代码实现sourcetarget1 关键词 python、excel、DBC、openpyxl 平台说明 项目Valuepython版本3.6 背景 从一个excel表中遍历删选信息并保存到另一个excel表 所需库 1.openpyxl :是一个用于读写 Excel 文件的 Pyt…

2023.11.17 关于 Spring Boot 日志文件

目录 日志文件作用 常见的日志框架说明 门面模式 日志的使用 日志的级别 六种级别 日志级别的设置 日志的持久化 使用 Lombok 输出日志 实现原理 普通打印和日志的区别 日志文件作用 记录 错误日志 和 警告日志(发现和定位问题)记录 用户登录…

牛客::栈的压入、弹出序列

栈的压入、弹出序列 题目 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序。假设压入栈的所有数字均不相等。例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序列对应的一个弹出序列&…

三、LED闪烁

通过LED的闪烁实验,详解Keil MDK中创建mm32单片机的工程的步骤。 1、开发环境 (1)Keil MDK: V5.38.0.0 (2)MCU: mm320163D7P。 2、Keil工程的创建 (1)打开Keil MDK。 (2)点击“Project”→“New μVision Project...”。 (3)选择工程保存地址及工程文件名&…

RE2文本匹配实战

引言 今天我们来实现RE2进行文本匹配,模型实现参考了官方代码https://github.com/alibaba-edu/simple-effective-text-matching-pytorch。 模型实现 RE2模型架构如上图所示。它的输入是两个文本片段,所有组件参数除了预测层和对齐层外都是共享的。上图…

变周期控制思路

举例&#xff1a;热值调节的过程中&#xff0c;调节周期在偏差较小时&#xff0c;可以设置较大些&#xff0c;调节周期在偏差较大时&#xff0c;可以设置较小些。并且在偏差较大时&#xff0c;立刻进入调节&#xff08;计时器清零&#xff09;。 -350<偏差<600&#xff0…

华为麒麟服务器--硬盘问题

记录以下今天处理的服务器&#xff1a; 情况说明&#xff1a;linux 系统&#xff0c;不知道什么原因系统就突然不能用了&#xff08;据说是前段时间断电来着&#xff0c;但是机房有应急电源&#xff09;。 系统环境&#xff1a; 服务器&#xff1a;华为RH2288H V3 服务器 服…

设计模式(二)-创建者模式(2-0)-简单工厂模式

一、简单工厂模式定义 客户端不需要关注创建实例的过程。于是需要通过工厂模式&#xff0c;要把创建对象过程和使用对象进行分离。所以客户端只要使用对象即可&#xff0c;而创建对象过程由一种类来负责&#xff0c;该类称为工厂类。 由于创建实例的方式是在静态方法里实现的…

文件钓鱼-后缀隐藏文件捆绑文件压缩释放技巧

0x00 文件钓鱼 简单说下文件样本钓鱼的目的&#xff0c;为诱导用户安装木马文件&#xff0c;达到控制或者窃取某些信息的目的&#xff0c;抛开邮件的真实性。木马的伪造是一个比较关键的点&#xff0c;下面简要说下三种木马文件伪装的技巧 0x01 水坑攻击与鱼叉攻击的概念 水坑…

VMware——WindowServer2012R2环境mysql5.7.14解压版安装主从复制(图解版)

目录 一、服务器信息二、192.168.132.33主服务器上安装mysql&#xff08;主&#xff09;2.1、环境变量配置2.2、安装2.2.1、修改配置文件内容2.2.2、初始化mysql并指定超级用户密码2.2.3、安装mysql服务2.2.4、启动mysql服务2.2.5、登录用户管理及密码修改2.2.6、开启远程访问 …

AD教程 (十九)PCB板框的评估和层叠设置

AD教程 &#xff08;十九&#xff09;PCB板框的评估和层叠设置 板子越小&#xff0c;层数越少&#xff0c;成本越低 PCB板框评估 器件摆放 CtrlA 选中全部器件点击工具&#xff0c;选择器件摆放&#xff0c;选择在矩形区域排列 框定矩形区域&#xff0c;器件就会摆放在框定的矩…

Unity Meta Quest 一体机开发(七):配置玩家 Hand Grab 功能

文章目录 &#x1f4d5;教程说明&#x1f4d5;玩家物体配置 Hand Grab Interactor⭐添加 Hand Grab Interactor 物体⭐激活 Hand Grab Visual 和 Hand Grab Glow⭐更新 Best Hover Interactor Group &#x1f4d5;配置可抓取物体&#xff08;无抓取手势&#xff09;⭐刚体和碰撞…

sftp 从windows10向linux(centos7)传输文件

前言背景&#xff1a;该示例是需要从windows10向本地linux系统传输一个qt安装文件&#xff0c;不想或者无法安装xftp这些传输工具&#xff0c;直接通过命令传输&#xff1b; 首先保证windows10 ping通linux系统ip&#xff0c;linux ping 通windows10系统&#xff1b; 注意&am…

ps找不到msvcp140.dll怎么办?亲测5个有效的修复方法分享

运行Photoshop时提示找不到MSVCP140.dll&#xff0c;这是因为计算机MSVCP140.dll文件丢失或者损坏。msvcp140.dll是微软Visual C 2015运行库的一部分&#xff0c;它包含了许多用于支持C运行的函数和类。当我们在使用某些程序时&#xff0c;如果这个程序依赖于msvcp140.dll&…

Figma 插件学习(一)

一.插件介绍 插件在文件中运行&#xff0c;执行一个或多个用户操作&#xff0c;并允许用户自定义其体验或创建更高效的工作流程。 插件通过专用插件API与Figma的编辑器交互。还可以利用外部Web API。 1.插件API 插件API支持读写功能&#xff0c;允许查看、创建和修改文件的…

单片机实验(二)

前言 实验一&#xff1a;用AT89C51单片机控制LCD 1602&#xff0c;使其显示两行文字&#xff0c;分别显示自己的学号和姓名拼音。 实验二&#xff1a;设计一个中断嵌套程序。要求K1和K2都未按下时&#xff0c;单片机控制8只数码管&#xff0c;滚动输出完整的学号。当按一下K1…

《微信小程序开发从入门到实战》学习二十

3.3 开发创建投票页面 3.3.8 使用icon图标文件 原来已经实现了投票选项的增加和修改功能&#xff0c;现在还差删除。现在为每一个选项增加删除按钮&#xff0c;可以以通过icon图标组件实现。 icon常用属性如下&#xff1a; type icon的类型&#xff0c;有success、s…

数据结构【DS】树与二叉树的应用

哈夫曼树 树的带权路径长度最小的二叉树WPL 路径长度【边数】 * 结点权值n个叶结点的哈夫曼树共有 2n-1 个结点 哈夫曼树的任意非叶结点的左右子树交换后仍是哈夫曼树对同一组权值&#xff0c;可能存在不同构的多棵哈夫曼树&#xff0c;但树的带权路径长度最小且唯一哈夫曼树…