Java --- JVM之垃圾回收相关算法

目录

一、垃圾标记算法

1.1、垃圾标记阶段:对象存活判断

1.2、引用计数算法

1.3、可达性分析算法

1.4、GC Roots

二、对象的finalization机制

2.1、生存还是死亡?

 三、查看GC Roots

3.1、使用MAT查看

四、使用JProfiler分析OOM

五、清除阶段算法

5.1、标记清除阶段 

5.2、标记-清除(Mark-Sweep)算法

5.3、复制(copying)算法 

5.4、标记-压缩(Mark-compact)算法

5.5、三种算法的对比

六、分代收集算法 

七、增量收集算法 

八、分区算法


一、垃圾标记算法

1.1、垃圾标记阶段:对象存活判断

1、在堆里面存放着几乎所有的Java对象实例,在GC执行垃圾回收之前,首先需要区分出内存中哪些是已经死亡的对象。只有被标记为已经死亡的对象,GC才会在执行垃圾回收时,释放掉其占用的内存空间,因此这个过程可以被称为标记阶段。

2、在JVM中如何标记一个死亡对象?当一个对象已经不再被任何存活对象继续引用时,就可以宣判为已经死亡。

3、判断对象存活一般有两种方式:引用计数算法和可达性分析算法

1.2、引用计数算法

1、引用计数算法(Reference Counting)比较简单,对每个对象保存一个整型的引用计数器属性。用于记录对象被引用的情况。

2、对于一个对象A,只要有任何一个对象引用了A,则A的引用计数器就加1;当引用失效时,引用计数器就减1。只要对象A的引用计数器的值为0,即表示对象A不可能再被使用,可进行回收。

3、优点:实现简单。垃圾对象便于辨识;判断效率高,回收没有延迟性

4、缺点:①、需要单独字段存储计数器,这样的做法增加了存储空间的开销。②、每次赋值都需要更新计数器,伴随着加法和减法操作,这增加了时间开销。③、引用计数器有一个严重的问题,即无法处理循环引用的情况。这是一个致命缺陷,导致Java的垃圾回收器没有使用这类算法。

参考代码:

参数设置:-XX:+PrintGCDetails

public class RefCountGCTest {
    //占用5mb的内存
    private byte[] bigSize = new byte[5 * 1024 * 1024];
    Object reference = null;
    public static void main(String[] args) {
        RefCountGCTest refCountGCTest1 = new RefCountGCTest();
        RefCountGCTest refCountGCTest2 = new RefCountGCTest();
        refCountGCTest1.reference = refCountGCTest2;
        refCountGCTest2.reference = refCountGCTest1;
        refCountGCTest1 = null;
        refCountGCTest2 = null;
        //显示的执行垃圾回收行为
        System.gc();
    }
}

情况1:不显示调用gc()回收

情况2:显示调用gc()回收 

总结:1、引用计数算法,是很多语言的资源回收选择,例如python,它更是同时支持引用计数和垃圾收集机制。2、具体那种算法最优要看场景,业界有大规模实践中仅保留引用计数机制,以提高吞吐量的尝试。3、Java并没有选择引用计数,是因为其存在一个基本的难题,也就是很难处理循环引用关系。4、解决办法:①、手动解除,即在合适的时机,解除引用关系。②、使用弱引用weakref,weakref是python提供的标准库,意在解决循环引用。

1.3、可达性分析算法

1、相对于引用计数算法,可达性分析算法不仅同样具备实现简单和执行高效等特点,更重要的是该算法可以有效地解决在引用计数算法中循环引用的问题,防止内存泄漏的发生。

2、相较于引用计数算法,可达性分析就是Java、C#选择的。这种类型的垃圾收集通常也叫作追踪性垃圾收集(Tracing Garbage Collection)

3、所谓”GC roots“根集合就是一组必须活跃的引用。

4、基本思路:

        ①、可达性分析算法是以根对象集合(GC Roots)为起始点,按照从上至下的方式搜索被根对象集合所连接的目标对象是否可达。

        ②、使用可达性分析算法后,内存中的存活对象都会被根对象集合直接或间接连接着,搜索所走过的路径称为引用链(reference Chain)。

        ③、如果目标对象没有任何引用链相连,则是不可达的,意味着该对象已经死亡,可以标记为垃圾对象。

        ④、在可达性分析算法中,只有能够被根对象集合直接或者间接连接的对象才是存活对象。

1.4、GC Roots

1、虚拟机栈中引用的对象,如各个线程被调用的方法中使用到的参数、局部变量等。

2、本地方法栈内JNI(通常说的本地方法)引用的对象。

3、方法区中类静态属性引用的对象。如Java类的引用类型静态变量

4、方法区中常量引用的对象。如字符串常量池(String Table)里的引用。

5、所有被同步锁synchronized持有的对象。

6、Java虚拟机内部引用。如基本数据类型对应的Class对象,一些常驻的异常对象(例如NullPointerException,OutOfMemoryError),系统类加载器。

7、反映Java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等。

8、除了固定的GC Roots集合以外,根据用户所选用的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象”临时性“地加入,共同构成完整GC Roots集合。如:分代收集和局部回收(Partial GC)。

注 意:1、如果要使用可达性分析算法来判断内存是否可回收,那么分析工作必须在一个能保障一致性的快照中执行。这点不满足的话分析结果的准确性就无法保证。2、这点也是导致GC进行时必须”Stop The World“的一个重要原因。即使是号称(几乎)不会发生停顿的CMS收集器中,枚举根节点时也是必须要停顿的。

二、对象的finalization机制

1、当Java语言提供了对象终止(finalization)机制来允许开发人员提供对象被销毁之前的自定义处理逻辑

2、当垃圾回收器发现没有引用指向一个对象,即:垃圾回收此对象之前,总会先调用这个对象的finalize()方法。

3、finalize()方法允许在子类中被重写,用于在对象被回收时进行资源释放。通常在这个方法中进行一些资源释放和清理工作,如关闭文件,套接字和数据库连接。

4、永远不要主动调用某个对象的finalize()方法,应该交给垃圾回收机制调用。原因:①、在finalize()时可能会导致对象复活。②、finalize()方法的执行时间是没有保障的,它完全由GC线程决定,极端情况下,若不发生GC,则fianlize()方法将没有执行机会。③、一个糟糕的finalize()会严重影响GC的性能。

5、从功能上来说,finalize()方法与C++中的析构函数比较相似,但是Java采用的是基于垃圾回收器的自动内存管理机制,所以finalize()方法本质上不同于C++中的析构函数。

6、由于finalize()方法的存在,虚拟机中的对象一般处于三种可能的状态

2.1、生存还是死亡?

1、如果从所有根节点都无法访问到某个对象,说明对象已经不再使用了。一般来说,此对象需要被回收。但事实上,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段。一个无法触及的对象有可能在某一个条件下“复活”自己,如果这样,那么对它的回收就是不合理的,为此,定义虚拟机中的对象可能的三种状态。

    ①、可触及的:从根节点开始,可以达到这个对象。

    ②、可复活的:对象的所有引用都被释放,但是对象有可能在finalize()中复活。

    ③、不可触及的:对象finalize()被调用,并且没有复活,那么就会进入不可触及状态。不可触及的对象不可能被复活,因为finalize()只会被调用一次。

2、以上3种状态中,是由于finalize()方法的存在,进行的区分,只有在对象不可触及时才可以被回收。

参考代码:

public class CanReliveTest {
    //类变量
    public static CanReliveTest canReliveTest;
    //重写finalize(),只能被调用一次
    @Override
    protected void finalize() throws Throwable {
        super.finalize();
        System.out.println("调用当前类重写finalize()");
        //当前待回收的对象在finalize()方法中与引用链上的一个对象canReliveTest建立了联系
        canReliveTest = this;
    }

    public static void main(String[] args) {

        try {
            canReliveTest = new CanReliveTest();
            //对象第一次拯救自己
            canReliveTest = null;
            System.gc();
            System.out.println("第一次gc调用");
            Thread.sleep(2000);
            if (canReliveTest == null){
                System.out.println("canReliveTest is dead");
            }else {
                System.out.println("canReliveTest is still alive");
            }
            System.out.println("第二次gc调用");
            canReliveTest = null;
            System.gc();
            Thread.sleep(2000);
            if (canReliveTest == null){
                System.out.println("canReliveTest is dead");
            }else {
                System.out.println("canReliveTest is still alive");
            }
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }
    }
}

 三、查看GC Roots

3.1、使用MAT查看

MAT是MemoryAnalyzer的简称,它是一款功能强大的Java堆内存分析器,用于查找内存泄漏以及查看内存消耗情况。是基于Eclipse开发的,是一款免费的性能分析工具

方式:使用JVisualVM生成dump文件

参考代码:

public class GCRootsTest {
    public static void main(String[] args) {
        ArrayList<Object> arrayList = new ArrayList<>();
        Date date = new Date();
        for (int i = 0; i < 100; i++) {
            arrayList.add(String.valueOf(i));
            try {
                Thread.sleep(10);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
        }
        System.out.println("数据添加完成");
        new Scanner(System.in).next();
        arrayList = null;
        date = null;
        System.out.println("arrayList,date已清除");
        new Scanner(System.in).next();
        System.out.println("结束");
    }
}

 使用MAT进行查看保存的dump文件

四、使用JProfiler分析OOM

参考代码:

设置参数:-Xms15m -Xmx15m -XX:+HeapDumpOnOutOfMemoryError

public class HeapOOMTest {
    //大小1MB
   byte[] aByte =  new byte[1 * 1024 * 1024];

    public static void main(String[] args) {
        ArrayList<HeapOOMTest> arrayList = new ArrayList<>();
        int count = 0;
        try {
            while (true){
                arrayList.add(new HeapOOMTest());
                count++;
            }
        } catch (Exception e) {
            System.out.println("合计:" + count);
            throw new RuntimeException(e);
        }
    }
}

五、清除阶段算法

5.1、标记清除阶段 

1、当成功区分出内存中存活对象和死亡对象后,GC接下来的任务就是执行垃圾回收,释放掉无用对象所占用的内存空间,以便有足够的可用内存空间为新对象分配内存。

2、目前在JVM中比较常见的三种垃圾收集算法是标记-清除算法、复制算法、标记-压缩算法

5.2、标记-清除(Mark-Sweep)算法

执行过程:

当堆中的有效内存空间(available memory)被耗尽的时候,就会停止整个程序(也称为stop the world),然后进行两项工作,第一项则是标记,第二项则是清除:

     ①、标记:Collector从引用根节点开始遍历,标记所有被引用的对象。一般是在对象的Header中记录为可达对象。

     ②、清除:Collector对堆内存从头到尾进行线性的遍历,如果发现某个对象在其Header中没有标记为可达对象,则将其回收。

缺点:①、效率不高。②、在进行GC的时候,需要停止整个应用程序,导致用户体验差。③、这种方式清理出来的空闲内存是不连续的,产生内存碎片。需要维护一个空闲列表。

什么是清除?

这里的清除并不是置空,而是把需要清除的对象地址保存在空闲的地址列表里。下次需要新对象需要加载时,判断垃圾的位置空间是否足够,如果够,就存放。

5.3、复制(copying)算法 

将活着的内存空间分为两块,每次只使用其中一块,在垃圾回收时将正在使用的内存中的存活对象复制到未被使用的内存块中,之后清除正在使用的内存块中,之后清除正在使用的内存块中的所有对象,交换两个内存的角色,最后完成垃圾回收。

优点:

①、没有标记和清除过程,实现简单,运行高效。 

②、复制过去以后保证空间的连续性,不会出现“碎片”问题。

缺点:

①、需要两倍的内存空间。

②、对于G1这种拆分成为大量region的GC,复制而不是移动,意味着GC需要维护region之间对象引用关系,不管是内存占用或者时间开销也不小。

注意:

如果系统中的垃圾对象很多,复制算法不会很理想。因为复制算法需要复制的存活对象数量并不会太大,或者非常低才行。

应用场景:

在新生代,对常规应用的垃圾回收,一次通常可以回收70%到99%的内存空间。回收性价比很高,所以现在的商业虚拟机都是用这种收集算法回收新生代。

5.4、标记-压缩(Mark-compact)算法

1、标记-压缩算法的最终结果等同于标记-清除算法执行完成后,再进行一次内存碎片整理,因此,也可以把它称为标记-清除-压缩算法。

2、二者的本质差异在于标记-清除算法是一种非移动式的回收算法,标记-压缩是移动式的。是否移动回收后的存活对象是一项优缺点并存的风险决策。

3、标记的存活对象将会被整理,按照内存地址依次排列,而未被标记内存会被清理。如此一来,当我们需要给新对象分配内存时,JVM只需要持有一个内存的起始地址就行,这比维护一个空闲表显然少很多开销。

执行过程:

第一阶段和标记清除算法一样,从根节点开始标记所有被引用对象。第二阶段将所有的存活对象压缩到内存的一端,按顺序排放。之后,清理边界外所有的空间。

优点:

  ①、消除了标记-清除算法当中,内存区域分散的缺点,我们需要给新对象分配内存时,JVM只需要持有一个内存起始地址即可。

  ②、消除了复制算法当中,内存减半的高额代价。

缺点:

  ①、从效率上来说,标记-整理算法要低于复制算法。

  ②、移动对象的同时,如果对象被其他对象引用,则需要调整引用的地址。

  ③、移动过程中,需要全程暂停用户应用程序。即STW

5.5、三种算法的对比

Mark-SweepMark-CompactCopying
速度中等最慢最快
空间开销少(但会堆积碎片)少(不会堆积碎片)通常需要活对象的2倍(不堆积碎片)
移动对象

 

 

六、分代收集算法 

分代收集算法,是基于这样的一个事实:不同的对象的生命周期是不一样的。因此,不同生命周期的对象可以采取不同的收集算法,以便提高回收效率。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点使用不同的回收算法,以提高垃圾回收效率。

在Java程序运行的过程中,会产生大量的对象,其中这些对象是业务信息相关,如Http请求中的Session对象,线程、Socket连接,这类对象跟业务直接挂钩,因此生命周期比较长。但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,如String对象,由于其不变类的特性。系统会产生大量的这些对象,有些对象甚至只用一次即可回收。

目前几乎所有的GC都是采用分代收集算法执行垃圾回收的。

以HotSpot中的CMS回收器为例,CMS是基于Mark-Sweep实现的,对于对象的回收率很高。而对于碎片问题,CMS采用基于Mark-Compact算法的Serial Old回收器作为补偿措施:当内存回收不佳(碎片导致的Concurrent Mode Failure时),将采用Serial Old执行Full GC以达到对老年代内存的整理。

分代的思想被现有的虚拟机广泛使用。几乎所有的垃圾回收器都区分新生代和老年代。

七、增量收集算法 

 上述现有的算法,在垃圾回收过程中,应用软件将处于一种Stop the World的状态。在Stop the World状态下,应用程序所有的线程都会挂机,暂停一切正常的工作,等待垃圾回收的完成。如果垃圾回收时间过长,应用程序会被挂起很久,将严重影响用户体验或者系统的稳定性。为了解决这个问题,即对实时垃圾收集算法的研究直接导致了增量收集(Incremental Collecting)算法的诞生。

基本思想:

如果一次性将所有的垃圾进行处理,需要造成系统长时间的停顿,那么就可以让垃圾收集线程和应用程序线程交替执行。每次,垃圾收集线程只收集一小片区域的内存空间,接着切换到应用程序线程。依次反复,直到垃圾收集完成

增量收集算法的基础仍是传统的标记-清除和复制算法。增量收集算法通过对线程间冲突的妥善处理,允许垃圾收集线程以分阶段的方式完成标记、清理或复制工作

缺点:

使用这种方式,由于在垃圾回收过程中,间断性地执行了应用程序代码,所以能减少系统的停顿时间。但是,因为线程切换和上下文转换的消耗,会使得垃圾回收的总体成本上升,造成系统吞吐量的下降

八、分区算法

一般来说,在相同条件下,堆空间越大,一次GC时所需要的时间就越长,有关GC产生的停顿也越长。为了更好地控制GC产生地停顿时间,将一块大的内存区域分割为多个小块,根据目标的停顿时间,每次合理地回收若干个小区间,而不是整个区间,从而减少一次GC所产生的停顿。

分代算法将按照对象的生命周期长短划分成两个部分,分区算法将整个空间划分成连续的不同小区间。

每个小区间都独立使用,独立回收。这种算法的好处是可以控制一次回收多少个小区间。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/165671.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

李宏毅2023机器学习作业HW05解析和代码分享

ML2023Spring - HW5 相关信息&#xff1a; 课程主页 课程视频 Sample code HW05 视频 HW05 PDF 个人完整代码分享: GitHub | Gitee | GitCode 运行日志记录: wandb P.S. HW05/06 是在 Judgeboi 上提交的&#xff0c;完全遵循 hint 就可以达到预期效果。 因为无法在 Judgeboi 上…

git常用命令和参数有哪些?【git看这一篇就够了】

文章目录 前言常用命令有哪些git速查表奉上常用参数后言 前言 hello world欢迎来到前端的新世界 &#x1f61c;当前文章系列专栏&#xff1a;git操作相关 &#x1f431;‍&#x1f453;博主在前端领域还有很多知识和技术需要掌握&#xff0c;正在不断努力填补技术短板。(如果出…

MIB 6.S081 System calls(1)using gdb

难度:easy In many cases, print statements will be sufficient to debug your kernel, but sometimes being able to single step through some assembly code or inspecting the variables on the stack is helpful. To learn more about how to run GDB and the common iss…

每天一道算法题(六)——返回一组数字中所有和为 0 且不重复的三元组

文章目录 前言1、问题2、示例3、解决方法4、效果5、注意点 前言 注意&#xff1a;答案中不可以包含重复的三元组。 1、问题 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] n…

23.11.19日总结

经过昨天的中期答辩&#xff0c;其实可以看出来项目进度太慢了&#xff0c;现在是第十周&#xff0c;预计第十四周是终级答辩&#xff0c;在这段时间要把项目写完。 前端要加上一个未登录的拦截器&#xff0c;后端加上全局的异常处理。对于饿了么项目的商品建表&#xff0c;之前…

redis问题归纳

1.redis为什么这么快&#xff1f; &#xff08;1&#xff09;基于内存操作&#xff1a;redis的所有数据都存在内存中&#xff0c;因此所有的运算都是内存级别的&#xff0c;所以性能比较高 &#xff08;2&#xff09;数据结构简单&#xff1a;redis的数据结构是专门设计的&…

系列五、怎么查看默认的垃圾收集器是哪个?

一、怎么查看默认的垃圾收集器是哪个 java -XX:PrintCommandLineFlags -version

python-opencv 培训课程作业

python-opencv 培训课程作业 作业一&#xff1a; 第一步&#xff1a;读取 res 下面的 flower.jpg&#xff0c;读取彩图&#xff0c;并用 opencv 展示 第二步&#xff1a;彩图 -> 灰度图 第三步&#xff1a;反转图像&#xff1a;最大图像灰度值减去原图像&#xff0c;即可得…

整数转罗马数字

罗马数字包含以下七种字符&#xff1a; I&#xff0c; V&#xff0c; X&#xff0c; L&#xff0c;C&#xff0c;D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如&#xff0c; 罗马数字 2 写做 II &#xff0c;即为两个并列的 1。12 写做 XII &#xff0c;即为…

【Go入门】 Go搭建一个Web服务器

【Go入门】 Go搭建一个Web服务器 前面小节已经介绍了Web是基于http协议的一个服务&#xff0c;Go语言里面提供了一个完善的net/http包&#xff0c;通过http包可以很方便的搭建起来一个可以运行的Web服务。同时使用这个包能很简单地对Web的路由&#xff0c;静态文件&#xff0c…

线性表--链表-1

文章目录 主要内容一.链表练习题1.设计一个递归算法&#xff0c;删除不带头结点的单链表 L 中所有值为 X 的结点代码如下&#xff08;示例&#xff09;: 2.设 L为带头结点的单链表&#xff0c;编写算法实现从尾到头反向输出每个结点的值代码如下&#xff08;示例&#xff09;: …

vite+vue3+ts项目,使用语法糖unplugin-auto-import插件的步骤

1. 安装插件 npm install unplugin-auto-import vitejs/plugin-vue -D2. vite.config.ts中引入插件 import AutoImport from "unplugin-auto-import/vite"export default defineConfig({plugins: [vue(), AutoImport({imports: ["vue", "vue-router…

C语言:动态内存管理

目录 为什么存在动态内存分配 动态内存函数 malloc和free 示例 calloc 示例 realloc 示例 常见的动态内存错误 对NULL指针的解引用操作 对动态开辟的空间进行越界访问 对于非动态开辟内存使用free释放 使用free释放一块动态开辟内存的一部分 对同一块内存多次释…

lv11 嵌入式开发 ARM指令集中(伪操作与混合编程) 7

目录 1 伪指令 2 伪操作 3 C和汇编的混合编程 4 ATPCS协议 1 伪指令 本身不是指令&#xff0c;编译器可以将其替换成若干条等效指令 空指令NOP 指令LDR R1, [R2] 将R2指向的内存空间中的数据读取到R1寄存器 伪指令LDR R1, 0x12345678 R1 0x12345678 LDR伪指令可以将任…

深度学习:欠拟合与过拟合

1 定义 1.1 模型欠拟合 AI模型的欠拟合&#xff08;Underfitting&#xff09;发生在模型未能充分学习训练数据中的模式和结构时&#xff0c;导致它在训练集和验证集上都表现不佳。欠拟合通常是由于模型太过简单&#xff0c;没有足够的能力捕捉到数据的复杂性和细节。 1.2 模型…

mysql练习1

-- 1.查询出部门编号为BM01的所有员工 SELECT* FROMemp e WHEREe.deptno BM01; -- 2.所有销售人员的姓名、编号和部门编号。 SELECTe.empname,e.empno,e.deptno FROMemp e WHEREe.empstation "销售人员";-- 3.找出奖金高于工资的员工。 SELECT* FROMemp2 WHE…

SpringSecurity6 | 默认登录页

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; Java从入门到精通 ✨特色专栏&#xf…

SpringBoot项目连接linux服务器数据库两种解决方法(linux直接开放端口访问本机通过SSH协议访问,以mysql为例)

最近找个springboot脚手架重新熟悉一下springboot相关框架的东西&#xff0c;结果发现好像项目还不能直接像数据库GUI工具一样填几个SSH参数就可以了&#xff0c;于是就给他再整一下看看如何解决 linux开放3306&#xff08;可修改&#xff09;端口直接访问 此方法较为方便&am…

基于一致性算法的微电网分布式控制MATLAB仿真模型

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 本模型主要是基于一致性理论的自适应虚拟阻抗、二次电压补偿以及二次频率补偿&#xff0c;实现功率均分&#xff0c;保证电压以及频率稳定性。 一致性算法 分布式一致性控制主要分为两类&#xff1a;协调同…

ZJU Beamer学习手册(二)

ZJU Beamer学习手册基于 Overleaf 的 ZJU Beamer模板 进行解读&#xff0c;本文则基于该模版进行进一步修改。 参考文献 首先在frame文件夹中增加reference.tex文件&#xff0c;文件内容如下。这段代码对参考文献的引用进行了预处理。 \usepackage[backendbiber]{biblatex} \…