MATLAB中std函数用法

目录

语法

说明

示例

矩阵列的标准差

三维数组的标准差

指定标准差权重

矩阵行的标准差

数组页的标准差

排除缺失值的标准差

标准差和均值

标准差


        std函数的功能是得到标准差。

语法

S = std(A)
S = std(A,w)
S = std(A,w,"all")
S = std(A,w,dim)
S = std(A,w,vecdim)
S = std(___,missingflag)
[S,M] = std(___)

说明

S = std(A) 返回 A 沿大小大于 1 的第一个数组维度计算的元素的标准差。默认情况下,标准差按 N-1 实现归一化,其中 N 是观测值数量。

  • 如果A是观测值的向量,则S是标量。

  • 如果A是一个列为随机变量且行为观测值的矩阵,则S是一个包含与每列对应的标准差的行向量。

  • 如果A是多维数组,则std(A)沿大小大于 1 的第一个数组维度计算,并将这些元素视为向量。此维度中S的大小变为1,而所有其他维度的大小仍与在A中相同。

  • 如果A是标量,则S为0。

  • 如果A是一个 0×0 的空数组,则 S 为 NaN。

  • 如果 A 是表或时间表,则 std(A) 返回单行表,其中包含每个变量的标准差。 (自 R2023a 起)

S = std(A,w) 指定加权方案。当 w = 0(默认值)时,标准差按 N-1 实现归一化,其中 N 是观测值数量。当 w = 1 时,标准差按观测值数量进行归一化。w 也可以是包含非负元素的权重向量。在这种情况下,w 的长度必须等于 std 将作用于的维度的长度。

        当 w 为 0 或 1 时,S = std(A,w,"all") 返回 A 的所有元素的标准差。

S = std(A,w,dim) 返回沿维度 dim 的标准差。要维持默认归一化并指定运算的维度,请在第二个参数中设置 w = 0。

        当 w 为 0 或 1 时,S = std(A,w,vecdim) 返回向量 vecdim 中指定维度的标准差。例如,如果 A 是矩阵,则 std(A,0,[1 2]) 返回 A 中所有元素的标准差,因为矩阵的每个元素包含在由维度 1 和 2 定义的数组切片中。

S = std(___,missingflag) 在上述任一语法的基础上指定包含还是省略 A 中的缺失值。例如,std(A,"omitmissing") 在计算标准差时会忽略所有缺失值。默认情况下,std 包括缺失值。

[S,M] = std(___) 还返回 A 中用于计算标准差的元素的均值。如果 S 是加权标准差,则 M 是加权均值。

示例

矩阵列的标准差

        创建一个矩阵,并计算每一列的标准差。

A = [4 -5 1; 2 3 5; -9 1 7];
S = std(A)
S = 1×3

    7.0000    4.1633    3.0551

三维数组的标准差

        创建一个三维数组,并计算沿第一个维度的标准差。

A(:,:,1) = [2 4; -2 1];
A(:,:,2) = [9 13; -5 7];
A(:,:,3) = [4 4; 8 -3];
S = std(A)
S = 
S(:,:,1) =

    2.8284    2.1213


S(:,:,2) =

    9.8995    4.2426


S(:,:,3) =

    2.8284    4.9497

指定标准差权重

        创建一个矩阵,并根据权重向量w计算每一列的标准差。

A = [1 5; 3 7; -9 2];
w = [1 1 0.5];
S = std(A,w)
S = 1×2

    4.4900    1.8330

矩阵行的标准差

        创建一个矩阵,并计算每一行的标准差。

A = [6 4 23 -3; 9 -10 4 11; 2 8 -5 1];
S = std(A,0,2)
S = 3×1

   11.0303
    9.4692
    5.3229

数组页的标准差

        创建一个三维数组并计算每页数据(行和列)的标准差。

A(:,:,1) = [2 4; -2 1];
A(:,:,2) = [9 13; -5 7];
A(:,:,3) = [4 4; 8 -3];
S = std(A,0,[1 2])
S = 
S(:,:,1) =

    2.5000


S(:,:,2) =

    7.7460


S(:,:,3) =

    4.5735

排除缺失值的标准差

        创建一个包含 NaN 值的矩阵。

A = [1.77 -0.005 NaN -2.95; NaN 0.34 NaN 0.19]
A = 2×4

    1.7700   -0.0050       NaN   -2.9500
       NaN    0.3400       NaN    0.1900

        计算矩阵的标准差,不包括缺失值。对于包含任一 NaN 值的矩阵列,std 使用非 NaN 元素进行计算。对于 A 中包含的所有值都是 NaN 的列,标准差为 NaN。

S = std(A,"omitmissing")
S = 1×4

         0    0.2440       NaN    2.2203

标准差和均值

        创建一个矩阵,并计算每一列的标准差和均值。

A = [4 -5 1; 2 3 5; -9 1 7];
[S,M] = std(A)
S = 1×3

    7.0000    4.1633    3.0551

M = 1×3

   -1.0000   -0.3333    4.3333

创建一个矩阵,根据权重向量 w 计算每列的加权标准差和加权均值。

A = [1 5; 3 7; -9 2];
w = [1 1 0.5];
[S,M] = std(A,w)
S = 1×2

    4.4900    1.8330

M = 1×2

   -0.2000    5.2000

参数说明

A — 输入数组

        输入数组,指定为向量、矩阵、多维数组、表或时间表。如果 A 是标量,则 std(A) 返回 0。如果 A 是一个 0×0 的空数组,则 std(A) 返回 NaN。

w — 粗细

权重,指定为下列值之一:

  • 0 - 按 N-1 实现归一化,其中 N 是观测值的数量。如果只有一个观测值,则权重为 1。

  • 1 - 按 N 实现归一化。

  • 由非负标量权重构成的向量,这些权重对应于沿其计算方差的A 维度。

dim — 沿其运算的维度

        沿其运算的维度,指定为正整数标量。如果不指定维度,则默认为第一个大于 1 的数组维度。

        维度 dim 表示长度减至 1 的维度。size(S,dim) 为 1,而所有其他维度的大小保持不变。

以一个 m×n 输入矩阵 A 为例:

  • std(A,0,1) 计算 A 的每一列元素的标准差,并返回一个 1×n 行向量。

    std(A,0,1) column-wise computation

  • std(A,0,2) 计算 A 的每一行元素的标准差,并返回一个 m×1 列向量。

    std(A,0,2) row-wise computation

        如果 dim 大于 ndims(A),则 std(A) 返回大小与 A 相同的由零组成的数组。

vecdim — 维度向量

        维度向量,指定为正整数向量。每个元素代表输入数组的一个维度。指定的操作维度的输出长度为 1,而其他保持不变。

        以 2×3×3 输入数组 A 为例。然后 std(A,0,[1 2]) 返回 1×1×3 数组,其元素是在 A 的每个页面上计算的标准差。

Mapping of a 2-by-3-by-3 input array to a 1-by-1-by-3 output array

missingflag — 缺失值条件

缺失值条件,指定为下表中的值之一。

输入数据类型描述
"includemissing"所有支持的数据类型

在计算标准差时包括 A 和 w 中的缺失值。如果运算维度中的任一元素缺失,则 S 中的对应元素也会缺失。

"includenan"double, single, duration
"includenat"datetime
"omitmissing"所有支持的数据类型忽略 A 和 w 中的缺失值,并基于较少的点计算标准差。如果运算维度中的所有元素都缺失,则 S 中的对应元素也会缺失。
"omitnan"double, single, duration
"omitnat"datetime

S — 标准差

标准差,以标量、向量、矩阵、多维数组或表形式返回

  • 如果 A 是观测值的向量,则 S 是标量。

  • 如果 A 是一个列为随机变量且行为观测值的矩阵,则 S 是一个包含与每列对应的标准差的行向量。

  • 如果 A 是多维数组,则 std(A) 沿大小不大于 1 的第一个数组维度计算,并将这些元素视为向量。此维度中 S 的大小变为 1,而所有其他维度的大小仍与在 A 中相同。

  • 如果 A 是标量,则 S 为 0。

  • 如果 A 是一个 0×0 的空数组,则 S 为 NaN。

  • 如果 A 是表或时间表,则 S 是单行表。 (自 R2023a 起)

M — 均值

均值,以标量、向量、矩阵、多维数组或表形式返回。

  • 如果 A 是观测值的向量,则 M 是标量。

  • 如果 A 是一个列为随机变量且行为观测值的矩阵,则 M 是一个包含与每列对应的均值的行向量。

  • 如果 A 是多维数组,则 std(A) 沿大小大于 1 的第一个数组维度计算,并将这些元素视为向量。此维度中 M 的大小变为 1,而所有其他维度的大小仍与在 A 中相同。

  • 如果 A 是标量,则 M 等于 A。

  • 如果 A 是一个 0×0 的空数组,则 M 为 NaN。

  • 如果 A 是表或时间表,则 M 是单行表。 (自 R2023a 起)

如果 S 是加权标准差,则 M 是加权均值。

标准差

对于由 N 个标量观测值组成的有限长向量 A,标准差定义为

,其中 μ 是 A:

的均值。标准差是方差的平方根。

        有些标准差的定义使用归一化因子 N 而非 N – 1。可以通过指定权重 1 来使用归一化因子 N,从而生成样本关于其均值的二阶矩的平方根。

        无论标准差的归一化因子是什么,都假定均值具有归一化因子 N。

加权标准差

        对于由 N 个标量观测值组成的有限长度向量 A 和加权方案 w,加权标准差定义为

,其中 μw 是 A 的加权均值。

加权均值

        对于由 N 个标量观测值组成的随机变量向量 A 和加权方案 w,加权均值定义为

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/161411.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ExcelBDD PHP Guideline

在PHP里面支持利用Excel的BDD,也支持利用Excel进行参数化测试 ExcelBDD Use Excel file as BDD feature file, get example data from Excel files, support automation tests. Features The main features provided by this library are: Read test data acco…

1334. 阈值距离内邻居最少的城市/Floyd 【leetcode】

1334. 阈值距离内邻居最少的城市 有 n 个城市,按从 0 到 n-1 编号。给你一个边数组 edges,其中 edges[i] [fromi, toi, weighti] 代表 fromi 和 toi 两个城市之间的双向加权边,距离阈值是一个整数 distanceThreshold。 返回能通过某些路径…

Spring学习②__IOC分析

目录 IOC控制反转IOCIOC理论案例IOC的思想(注入)IOC底层什么是 IOCIOC 底层原理 总结 IOC 控制反转IOC ①控制反转,把对象创建和对象之间的调用过程,交给Spring进行 ②使用IOC目的:为了耦合度降低 IOC理论案例 控制…

基于算术优化算法优化概率神经网络PNN的分类预测 - 附代码

基于算术优化算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于算术优化算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于算术优化优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

量化交易:开发传统趋势策略之---双均线策略

本文以双均线策略为例,描述如何在BigQuant策略平台上,开发一个传统的趋势跟踪策略,以更好地理解BigQuant回测机制。 双均线策略的策略思想是:当短期均线上穿长期均线时,形成金叉,此时买入股票。当短期均线…

搜索二叉树(二叉搜索树)的实现(递归与非递归)

一、搜索二叉树的概念 搜索二叉树又称二叉排序树,二叉搜索树,它或者是一棵空树,或者是具有以下性质的二叉树: 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 若它的右子树不为空,则右子树上所有节点…

微信小程序动态生成表单来啦!你再也不需要手写表单了!

dc-vant-form 由于我们在小程序上涉及到数据采集业务,需要经常使用表单,微信小程序的表单使用起来非常麻烦,数据和表单是分离的,每个输入框都需要做数据处理才能实现响应式数据,所以我开发了dc-vant-form,…

buildadmin+tp8表格操作(2)----表头上方按钮绑定事件处理,实现功能(全选/全不选)

buildAdmin 表格上方的按钮添加完成之后, 就要对其实现功能了 有了上面的说明, 我就只要得到了 ref 中的表格对象, 就可以象el-table 一样来操作表格的属性和方法了 我们来实现上面的几个按钮的方法 全选/全不选 上面就是添加按钮功能的全过…

小程序申请,商户号申请,微信支付开通操作流程

总目录 文章目录 总目录前言1 申请商户号(如已有商户号跳过)1 申请流程与资料2 详细申请步骤 2 申请开通接入微信支付步骤3 申请微信小程序1 申请小程序步骤2 查看小程序AppID 4 微信支付普通商户与AppID账号关联结语 前言 本文主要讲解如何申请微信商户…

私有云边界网络部署实践

业务背景 在私有云的业务场景中,常见的通信中包含了同VPC内虚机互访、不同VPC之间的虚机互访、VPC访问Underlay资源、VPC访问Internet资源、VPC提供服务,被Internet访问、VPC与专线网络之间互访等;实际应用中,大多数云业务通信场…

vue解除数据双向绑定

let obj JSON.parse(JSON.stringify(data));例如,table列表中,点击编辑时,可对val进行如上操作来解除双向绑定

运行软件报错mfc140.dll丢失?分享mfc140.dll丢失的解决方法

小伙伴们,你是否也有过这样的经历:每当碰到诸如" mfc140.dll 丢失 "之类的烦人错误时,你是不是会一头雾水,完全不知道从何下手去解决?不要担心,接下来咱就给你提供这样一篇实用教程,教…

适合家电和消费类应用R7F101GEE4CNP、R7F101GEG4CNP、R7F101GEG3CNP、R7F101GEE3CNP新一代RL78通用微控制器

典型应用 • 电机控制 • 电源 • 照明 • 一般用途 • 消费类应用 • 家用电器 • 工业自动化 • 楼宇自动化 器件选型 1、R7F101GEE4CNP:16BIT MCU RL78/G24 64K 40HWQFN -40C 至 125C 2、R7F101GEG4CNP:16BIT MCU RL78/G24 128K 40HWQFN -40C 至 …

【linux】进行间通信——共享内存+消息队列+信号量

共享内存消息队列信号量 1.共享内存1.1共享内存的原理1.2共享内存的概念1.3接口的认识1.4实操comm.hppservice.cc (写)clint.cc (读) 1.5共享内存的总结1.6共享内存的内核结构 2.消息队列2.1原理2.2接口 3.信号量3.1信号量是什么3…

IJ中配置TortoiseSVN插件:

文章目录 一、报错情况:二、配置TortoiseSVN插件: 一、报错情况: 由于公司电脑加密,TortoiseSVN菜单没有提交和更新按钮,所以需要使用IJ的SVN进行代码相关操作 二、配置TortoiseSVN插件: 需要设置一个svn.…

肖sir__linux讲解vim命令(3.1)

vim 命令 一、 vi/vim 编辑器共分为三种模式: 格式 :vim 文件名 命令模式(Command mode),“ESC”或ctrlc键 输入模式(Insert mode) 底线命令模式(Last line mode) …

【uniapp】使用扫码插件,解决uni.scanCode扫码效率低的问题

1. 背景 uniapp 中自带的二维码扫描的 API 是 uni.scanCode,但有如下问题: 二维码扫描的效率不高,有些需要扫2秒左右 较小或模糊的一些二维码无法识别出来,多次扫同样的一个码可能出现扫码失败的情况 受环境影响大&#xff0c…

传输层——UDP协议

文章目录 一.传输层1.再谈端口号2.端口号范围划分3.认识知名端口号4.两个问题5.netstat与iostat6.pidof 二.UDP协议1.UDP协议格式2.UDP协议的特点3.面向数据报4.UDP的缓冲区5.UDP使用注意事项6.基于UDP的应用层协议 一.传输层 在学习HTTP等应用层协议时,为了便于理…

从0开始学习JavaScript--JavaScript DOM操作与事件处理

在前端开发中,DOM(文档对象模型)是一个至关重要的概念,它为JavaScript提供了一种与HTML和XML文档交互的方法。本文将深入探讨DOM的概念与作用,以及JavaScript与DOM之间的密切关系。 DOM的概念与作用 DOM是什么&#…

Vite 启动默认只能访问localhost解决方法

事情的经过是因为我需要测试本地项目的接口,然后因为burp默认不抓取localhost,127.0.0.1 .而且我也不想去修改burp. 所以我通过本地IP地址访问项目, 发现项目无法访问。 默认启动 所以特此记录一下。 在本地项目的package.json 中需要运行的脚本后 添加 --host即可。 具体如下…