基于算术优化算法优化概率神经网络PNN的分类预测 - 附代码

基于算术优化算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于算术优化算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于算术优化优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用算术优化算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于算术优化优化的PNN网络

算术优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/119785544

利用算术优化算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

算术优化参数设置如下:

%% 算术优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,算术优化-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/161405.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

量化交易:开发传统趋势策略之---双均线策略

本文以双均线策略为例,描述如何在BigQuant策略平台上,开发一个传统的趋势跟踪策略,以更好地理解BigQuant回测机制。 双均线策略的策略思想是:当短期均线上穿长期均线时,形成金叉,此时买入股票。当短期均线…

搜索二叉树(二叉搜索树)的实现(递归与非递归)

一、搜索二叉树的概念 搜索二叉树又称二叉排序树,二叉搜索树,它或者是一棵空树,或者是具有以下性质的二叉树: 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 若它的右子树不为空,则右子树上所有节点…

微信小程序动态生成表单来啦!你再也不需要手写表单了!

dc-vant-form 由于我们在小程序上涉及到数据采集业务,需要经常使用表单,微信小程序的表单使用起来非常麻烦,数据和表单是分离的,每个输入框都需要做数据处理才能实现响应式数据,所以我开发了dc-vant-form,…

buildadmin+tp8表格操作(2)----表头上方按钮绑定事件处理,实现功能(全选/全不选)

buildAdmin 表格上方的按钮添加完成之后, 就要对其实现功能了 有了上面的说明, 我就只要得到了 ref 中的表格对象, 就可以象el-table 一样来操作表格的属性和方法了 我们来实现上面的几个按钮的方法 全选/全不选 上面就是添加按钮功能的全过…

小程序申请,商户号申请,微信支付开通操作流程

总目录 文章目录 总目录前言1 申请商户号(如已有商户号跳过)1 申请流程与资料2 详细申请步骤 2 申请开通接入微信支付步骤3 申请微信小程序1 申请小程序步骤2 查看小程序AppID 4 微信支付普通商户与AppID账号关联结语 前言 本文主要讲解如何申请微信商户…

私有云边界网络部署实践

业务背景 在私有云的业务场景中,常见的通信中包含了同VPC内虚机互访、不同VPC之间的虚机互访、VPC访问Underlay资源、VPC访问Internet资源、VPC提供服务,被Internet访问、VPC与专线网络之间互访等;实际应用中,大多数云业务通信场…

vue解除数据双向绑定

let obj JSON.parse(JSON.stringify(data));例如,table列表中,点击编辑时,可对val进行如上操作来解除双向绑定

运行软件报错mfc140.dll丢失?分享mfc140.dll丢失的解决方法

小伙伴们,你是否也有过这样的经历:每当碰到诸如" mfc140.dll 丢失 "之类的烦人错误时,你是不是会一头雾水,完全不知道从何下手去解决?不要担心,接下来咱就给你提供这样一篇实用教程,教…

适合家电和消费类应用R7F101GEE4CNP、R7F101GEG4CNP、R7F101GEG3CNP、R7F101GEE3CNP新一代RL78通用微控制器

典型应用 • 电机控制 • 电源 • 照明 • 一般用途 • 消费类应用 • 家用电器 • 工业自动化 • 楼宇自动化 器件选型 1、R7F101GEE4CNP:16BIT MCU RL78/G24 64K 40HWQFN -40C 至 125C 2、R7F101GEG4CNP:16BIT MCU RL78/G24 128K 40HWQFN -40C 至 …

【linux】进行间通信——共享内存+消息队列+信号量

共享内存消息队列信号量 1.共享内存1.1共享内存的原理1.2共享内存的概念1.3接口的认识1.4实操comm.hppservice.cc (写)clint.cc (读) 1.5共享内存的总结1.6共享内存的内核结构 2.消息队列2.1原理2.2接口 3.信号量3.1信号量是什么3…

IJ中配置TortoiseSVN插件:

文章目录 一、报错情况:二、配置TortoiseSVN插件: 一、报错情况: 由于公司电脑加密,TortoiseSVN菜单没有提交和更新按钮,所以需要使用IJ的SVN进行代码相关操作 二、配置TortoiseSVN插件: 需要设置一个svn.…

肖sir__linux讲解vim命令(3.1)

vim 命令 一、 vi/vim 编辑器共分为三种模式: 格式 :vim 文件名 命令模式(Command mode),“ESC”或ctrlc键 输入模式(Insert mode) 底线命令模式(Last line mode) …

【uniapp】使用扫码插件,解决uni.scanCode扫码效率低的问题

1. 背景 uniapp 中自带的二维码扫描的 API 是 uni.scanCode,但有如下问题: 二维码扫描的效率不高,有些需要扫2秒左右 较小或模糊的一些二维码无法识别出来,多次扫同样的一个码可能出现扫码失败的情况 受环境影响大&#xff0c…

传输层——UDP协议

文章目录 一.传输层1.再谈端口号2.端口号范围划分3.认识知名端口号4.两个问题5.netstat与iostat6.pidof 二.UDP协议1.UDP协议格式2.UDP协议的特点3.面向数据报4.UDP的缓冲区5.UDP使用注意事项6.基于UDP的应用层协议 一.传输层 在学习HTTP等应用层协议时,为了便于理…

从0开始学习JavaScript--JavaScript DOM操作与事件处理

在前端开发中,DOM(文档对象模型)是一个至关重要的概念,它为JavaScript提供了一种与HTML和XML文档交互的方法。本文将深入探讨DOM的概念与作用,以及JavaScript与DOM之间的密切关系。 DOM的概念与作用 DOM是什么&#…

Vite 启动默认只能访问localhost解决方法

事情的经过是因为我需要测试本地项目的接口,然后因为burp默认不抓取localhost,127.0.0.1 .而且我也不想去修改burp. 所以我通过本地IP地址访问项目, 发现项目无法访问。 默认启动 所以特此记录一下。 在本地项目的package.json 中需要运行的脚本后 添加 --host即可。 具体如下…

IIs部署发布vue项目测试环境

打开【控制面板 > 程序>启用或关闭Windows功能 】 1、安装IIS: 把这些勾选上,点击确定下载。 2、安装.net: 把这些勾选上,点击确定下载。 3、搜索IIs打开: 4、右击【网站>添加网站 】进行配置,点击确定。 4、右击[项目le…

DRF纯净版项目搭建和配置

一、安装模块和项目 1.安装模块 pip install django pip install djangorestframework pip install django-redis # 按需安装 2.开启项目和api (venv) PS D:\pythonProject\env_api> django-admin startproject drf . (venv) PS D:\pythonProject\env_api> python ma…

YOLOv8改进 | DAttention (DAT)注意力机制实现极限涨点

论文地址: DAT论文地址 官方地址:官方代码的地址 代码地址:文末有修改了官方代码BUG的代码块复制粘贴即可 一、本文介绍 本文给大家带来的是YOLOv8改进DAT(Vision Transformer with Deformable Attention)的教程,其发布于2022…

使用 Python进行量化交易:前向验证分析

运行环境:Google Colab 1. 利用 yfinance 下载数据 import yfinance as yfticker AAPL df yf.download(ticker) df下载苹果的股票数据 df df.loc[2018-01-01:].copy()dfdf[change_tomorrow] df[Adj Close].pct_change(-1) df.change_tomorrow df.change_tom…