[算法学习笔记](超全)概率与期望

引子

先来讲个故事······

话说在神奇的OI大陆上,有一只paper mouse

有一天,它去商场购物,正好是11.11,商店有活动

它很荣幸被选上给1832抽奖

在抽奖箱里,有3个蓝球,12个红球

paper mouse能抽3次

蒟蒻的paper mouse就疑惑了:抽到至少1个蓝球的概率是多少???

Answer:

总共有15个球

只抽到1个蓝球的概率是\frac{C_{3}^{1}*C_{12}^{2}}{C_{15}^{3}}\approx0.435165(很好理解吧,在4个蓝球里取一个,再在11个红球里面取3个,总共是在15个里面取4个)

抽到2个蓝球的概率是\frac{C_{3}^{2}*C_{12}^{1}}{C_{15}^{3}}\approx0.079121

抽到3个蓝球的概率是\frac{C_{3}^{3}*C_{12}^{0}}{C_{15}^{3}}\approx0.002198

所以总概率就是三者之和,即0.435165+0.079121+0.002198=0.516484\approx\frac{129}{250}

我们也可以反过来分析:如果paper mouse运气爆棚,一个蓝球都没有抽到

那么其对立事件就一定会有至少一个蓝球

所以概率就是:1-\frac{C_{12}^{3}}{C_{15}^{3}}\approx1-0.483516=0.516484\approx\frac{129}{250}

也就是说,paper mouse有接近\frac{1}{2}的概率给心爱的1832送上礼物······

概率

概率就是随机事件出现的可能性大小

For example,上面的故事里就涉及到概率

若某种事件重复了N次,其中A事件出现了M次,出现A事件的概率就是\frac{M}{N}

同时,0\leq \frac{M}{N}\leq 1,用P()表示

即:P(A)=\frac{M}{N}

1.1 条件概率与全概率

条件概率公式:

如果事件A发生的概率为P(A),事件B单独发生的概率为P(b)

若B必须在A发生之后发生,则B发生的概率就是条件概率,P(B)=P(A|b)=\frac{P(AB)}{P(b)}

(是不是还比较好理解?真正shit的才刚刚开始)

全概率公式:

如果事件 B1, B2,⋯, Bn 构成一个完整的样本空间,且两两互斥,P(Bi) > 0。 则对于任意事件 A 有:P(A)=\sum_{i=1}^{n}P(A|B_i)P(B_i),这就是全概率公式

思想就是:P(A)不是很好求,但是把P(A)拆开计算P(A|Bi)P(Bi)就相对好算一些

举个例子:

paper mouse去表白1832了
他每次写情书,1832都有0.5的概率看见
而第一次看见,1832有0.2的概率同意他
第二次看见时,1832有0.5的概率同意他
第三次看见时,1832一定会同意他的请求 

求paper mouse获得1832爱情的概率

通过全概率公式:

事件A是paper mouse陷入爱河

事件集合B是:B={B_0,B_1,B_2,B_3},B_i表示paper mouse表白了i次

P(A)=P(AB_0)+P(AB_1)+P(AB_2)+P(AB_3)

            = P(A|B_0)P(B_0) + P(A|B_1)P(B_1) + P(A|B_2)P(B_2)+ P(A|B_3)P(B_3)

            =0+C_{3}^{1}*0.5^{3}*0.2+C_{3}^{2}*0.5^{3}*0.5+C_{3}^{3}*0.5^{3}*1

            =0.3875

所以paper mouse表白成功的概率高达0.3!(喜)

期望

炸裂的东西来了

先看看期望的定义

1.1 期望定义

如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随 机变量称为离散型随机变量。

离散型随机变量的一切可能的取值 Xi 与对应的概率 P(Xi) 乘积之和称为该离散型随机变量的数学期望,记为 E(X) ,简称期望。

怎么样?是不是蛮有意思的?

换一种通俗但不精确的方式阐述一下(涉及下定义内容,非xxs请谨慎观看):

期望就是    某件事发生的概率集合中的每一个数    对其对应值的乘积    的和

一个普通骰子,众所周知有六面,对应1~6

每一面转到的概率就是 \frac{1}{6},所以:

E(X)=\frac{1}{6}*1+\frac{1}{6}*2+\frac{1}{6}*3+\frac{1}{6}*4+\frac{1}{6}*5+\frac{1}{6}*6

            =\frac{1}{6}*(1+2+3+4+5+6)

            =3.5

所以也可以这么说:

数学期望可以理解为某件事情大量发生之后的平均结果。

来个难点的:

设一张彩票为 2 元,每售 100000 张开奖,假每张彩票有一个对应的六位数号码,奖次如下:

  • 安慰奖:奖励 4 元,中奖概率0.1
  • 幸运奖:奖励 20 元,中奖概率 0.01
  • 手气奖:奖励 200 元,中奖概率 0.001
  • 一等奖:奖励 2000 元,中奖概率 0.0001
  • 特等奖:奖励 20000 元,中奖概率 0.00001

那公司到底是亏还是赚呢?

我们来简单计算一下,对于每一位购买彩票的用户,公司可能支出为: 

0.14+0.01*20+0.001*200+0.0001*2000+0.00001*20000=1.2

所以公司期望赚0.8元

1.2 期望的线性性质

设 X, Y 是任意两个随机变量,则有

  • E(X + Y ) = E(X) + E(Y )
  • E(aX + bY ) = aE(X) + bE(Y ) 

证明略

再举个栗子:

同时仍一颗骰子的期望为3.5

同时扔两颗骰子的概率是3.5+3.5=7

1.3 条件期望与全期望公式

一个经典xxs的题:

A班平均分为x分,B班平均分为y分

求A、B两个班的平均分

显而易见的:A、B班的平均分不能直接(x+y)/2

而是:(x*a+ y*b)/(x+y),其中a表示A班人数,b表示B班人数

期望也差不多。

友好的看一下全期望公式:

设 X 是一个离散型随机变量, 当 X = xi 时,随机变量 Y 可能包含多种情况 y1, y2,⋯, yk,随机变量 Y 的条件 数学期望为:

E(Y|X=x_i)=\sum ^{k}_{j=1}y_j × P(Y = y_j |X = x_i)

对于随机变量 X 有很多取值 x1, x2,⋯, xa,Y 有很多取值 y1, y2,⋯, yb。

全期望公式:

E(Y)=E(E(Y|X))

            =\sum ^{a}_{i=1}P(X = x_i)E(Y|X = x_i)

            = \sum^{a}_{i=1}P(X=x_i)\sum^{b}_{j=1}y_j*P(Y=y_j|X=x_i)

            =\sum^{a}_{i=1}\sum^{b}_{j=1}y_j*P(X=xi)*P(Y= y_i|X=x_i)

            =\sum^{a}_{i=1}\sum^{b}_{j=1}y_j×P(X=x_i,Y=y_j)

            =E(Y)

例如,一项工作由甲一个人完成,平均需要 4 小时,而乙有 0.4 的概率来帮忙,两个人完成平均只需要 3 小时。

若用 X 表示完成这项工作的人数,而 Y 表示完成的这项工作的期望时间(单位小时)

由于这项工作要么由一 个人完成, 要么由两个人完成,那么这项工作完成的期望时间

E(Y)=P(X=1)*E(Y|X=1)+P(X=2)*E(Y|X=2)=(1-0.4)*4-0.4*3=3.6​​​​​​​

(例题下次更新)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/160423.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

EtherCAT从站EEPROM分类附加信息详解:TXPDO(输出过程数据对象)

0 工具准备 1.EtherCAT从站EEPROM数据(本文使用DE3E-556步进电机驱动器)1 分类附加信息——TXPDO(输出过程数据对象) 1.1 分类附加信息规范 在EEPROM字64开始的区域存储的是分类附加信息,这里存储了包括设备信息、S…

企业应用集成

1.企业集成分类 按集成点分和按传输方式两种。 1.1按集成点分: 集成点 效果 解题关键点 界面集成 界面 统一入口,产生 "整体"感觉 "整体"感觉 最小代价实现一体化操作 数据集成 数据 不同来源的数据逻辑或物理上 "…

肖sir__linux讲解(2.0)

linux讲解 一、linux介绍 1、Linux是一个免费、开源、基于Posix和Unix的多用户、多任务、支持多线程和多CPU的操作系统。 2、由芬兰大学生Linux torvalds在1991年开发了该系统 3、什么是免费、开源? 免费:使用这个系统不要钱。 开源:开放系统…

AD教程 (十八)导入常见报错解决办法(unkonw pin及绿色报错等)

AD教程 (十八)导入常见报错解决办法(unkonw pin及绿色报错等) 常见报错解决办法 绿色报错 可以先按TM,复位错位标识绿色报错原因一般是由于规则冲突的原因,和规则冲突就会报错 点击工具,设计…

H5ke11--1登录界面一直保存--用本地localStorage存储

目录 代码详解 localStage优点 :一直保存着 注意事项: storage属性们 代码详解 ke8学校陈老师H5-CSDN博客文章浏览阅读76次。实现H5中新增的三个元素:forEach的使用方法。https://blog.csdn.net/m0_72735063/article/details/134019012即此之后 当然可以分为按…

redis + celery

首先,部署Redis数据库: 先下载包: wget http://download.redis.io/releases/redis-5.0.7.tar.gz 解压redis包: tar -xvf redis-5.0.7.tar.gz 编译: make sudo make install (这样没有指定安装目录&#…

H5ke11--3介绍本地,会话存储

代码顺序: 1.设置input,捕获input如果有多个用属性选择符例如 input[typefile]点击事件.向我们的本地存储设置键值对 2.在点击事件外面设置本地存储表示初始化的值.点击上面的事件才能修改我们想修改的值 会话(session)浏览a数据可以写到本地硬盘,关闭页面数据就没了 本地(…

【docker】Docker网络与iptables

Docker能为我们提供很强大和灵活的网络能力,很大程度上要归功于与iptables的结合。在使用时,你可能没有太关注到 iptables在其中产生的作用,这是因为Docker已经帮我们自动的完成了相关的配置。 iptables在Docker中的应用主要是用于网络流量控…

数据结构与算法面试题——C++

自己在秋招过程中遇到的数据结构与算法方面的面试题 数据结构 vector vector是⼀种序列式容器,与array唯⼀差别就是对于空间运⽤的灵活性 array占⽤的是静态空间,⼀旦配置了就不可以改变⼤⼩,如果遇到空间不⾜的情况还要⾃⾏创建更⼤的空间…

AlphaControls控件TsDBCombobox出错:访问违规

日常使用AlphaControls控件TsDBCombobox,作为数据变化数据的控件。通常正常使用,一日 发现,出现以下错误: 控件访问违规的源代码,出错代码: function TacMainWnd.CallPrevWndProc(const Handle: hwnd; co…

UnoCss(原子化css引擎) 让你的开发更轻松愉快

什么是原子化CSS,UnoCSS又是什么,对此有疑问的推荐看下antfu的这篇文章——重新构想原子化 CSS (antfu.me) 相信看完这篇文章的你也会跟我一样热衷于UnoCSS. 介绍 今天介绍一个CSS开发利器 UnoCSS , 是一个具有高性能且极具灵活性的即时原子化 CSS 引擎…

若依启动步骤

1.创建数据库 2.启动redis 3.改后端的数据库连接配置 4.配置redis redis的地址:cmd中ipconfig命令查看 6.启动后端:如下 7.启动前端ruoyi-ui中 先运行npm install,再npm run dev。项目就启动成功了。 用户名:admin 密码&#x…

二十九、W5100S/W5500+RP2040树莓派Pico<Web socket Server>

文章目录 1 前言2 简介2 .1 什么是WebSocket协议?2.2 WebSocket协议工作原理2.3 WebSocket协议优点2.4 WebSocket应用场景 3 WIZnet以太网芯片4 WebSocket示例概述以及使用4.1 流程图4.2 准备工作核心4.3 连接方式4.4 主要代码概述4.5 结果演示 5 注意事项6 相关链接…

Leetcode 剑指 Offer II 053. 二叉搜索树中的中序后继

题目难度: 中等 原题链接 今天继续更新 Leetcode 的剑指 Offer(专项突击版)系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~ 题目描述 给定一棵二叉搜索树和其中的一个节点 p ,找到该节点在…

【精选】HTML5最全知识点集合

HTML5简介与基础骨架 HTML5介绍 HTML5是用来描述网页的一种语言&#xff0c;被称为超文本标记语言。用HTML5编写的文件&#xff0c;后缀以.html结尾 HTML是一种标记语言&#xff0c;标记语言是一套标记标签。标签是由尖括号包围的关键字&#xff0c;例如&#xff1a;<html…

基于单片机智能液位水位监测控制系统设计

**单片机设计介绍&#xff0c; 基于单片机智能液位水位监测控制系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的智能液位水位监测控制系统可以用来检测和控制液位的高低&#xff0c;并可以用于水泵的控制和自…

戴姆勒——从豪华私家车到无人驾驶飞机

戴姆勒(DaimlerAG)是梅赛德斯-奔驰和精灵(Smart)汽车的德国母公司。自1926年其前身公司合并为戴姆勒-奔驰公司以来&#xff0c;戴姆勒在生产豪华和消费型汽车、卡车和公共汽车方面有着悠久的历史。 如今&#xff0c;除了以其精密设计的汽车闻名外&#xff0c;该公司还在设计、…

⑩④【MySQL】什么是视图?怎么用?视图的检查选项? 视图的作用?[VIEW]

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ 视图VIEW ⑩④详解MySQL视图1. 视图的基本使用…

NPDP 02组合管理

NPDP 产品经理认证知识体系指南解读&#xff0c;02组合管理 第二章 组合管理 公司战略或经营战略以及创新战略&#xff0c;为竞争性创新投资之间的权衡决策提供了整体方向和框架。在发展和持续性维护一个组织的产品组合时&#xff0c;总要面对一系列彼此竞争资源和投资的项目。…

11.5MyBatis(进阶)

一.${}和#{} 1.$是直接替换,#是预处理(使用占位符,替换成?).前者不安全(SQL注入), 后者安全. 2.$的使用场景: 如果传递的值是sql的关键字,只能使用$,不能使用#(asc,desc). 二.SQL注入 注意: 如果使用${}进行传参,一定要是可以穷举的,并且要进行安全性验证(例如排序,只能传a…