结构型模式-组合模式

组合模式

概述

在这里插入图片描述

​ 对于这个图片肯定会非常熟悉,上图我们可以看做是一个文件系统,对于这样的结构我们称之为树形结构。在树形结构中可以通过调用某个方法来遍历整个树,当我们找到某个叶子节点后,就可以对叶子节点进行相关的操作。可以将这颗树理解成一个大的容器,容器里面包含很多的成员对象,这些成员对象即可是容器对象也可以是叶子对象。但是由于容器对象和叶子对象在功能上面的区别,使得我们在使用的过程中必须要区分容器对象和叶子对象,但是这样就会给客户带来不必要的麻烦,作为客户而已,它始终希望能够一致的对待容器对象和叶子对象。

定义:

​ 又名部分整体模式,是用于把一组相似的对象当作一个单一的对象。组合模式依据树形结构来组合对象,用来表示部分以及整体层次。这种类型的设计模式属于结构型模式,它创建了对象组的树形结构。

结构

组合模式主要包含三种角色:

  • 抽象根节点(Component):定义系统各层次对象的共有方法和属性,可以预先定义一些默认行为和属性。
  • 树枝节点(Composite):定义树枝节点的行为,存储子节点,组合树枝节点和叶子节点形成一个树形结构。
  • 叶子节点(Leaf):叶子节点对象,其下再无分支,是系统层次遍历的最小单位。

案例实现

【例】软件菜单

如下图,我们在访问别的一些管理系统时,经常可以看到类似的菜单。一个菜单可以包含菜单项(菜单项是指不再包含其他内容的菜单条目),也可以包含带有其他菜单项的菜单,因此使用组合模式描述菜单就很恰当,我们的需求是针对一个菜单,打印出其包含的所有菜单以及菜单项的名称。

在这里插入图片描述

要实现该案例,我们先画出类图:
在这里插入图片描述

代码实现:

不管是菜单还是菜单项,都应该继承自统一的接口,这里姑且将这个统一的接口称为菜单组件。

//菜单组件  不管是菜单还是菜单项,都应该继承该类
public abstract class MenuComponent {

    protected String name;
    protected int level;

    //添加菜单
    public void add(MenuComponent menuComponent){
        throw new UnsupportedOperationException();
    }

    //移除菜单
    public void remove(MenuComponent menuComponent){
        throw new UnsupportedOperationException();
    }

    //获取指定的子菜单
    public MenuComponent getChild(int i){
        throw new UnsupportedOperationException();
    }

    //获取菜单名称
    public String getName(){
        return name;
    }

    public void print(){
        throw new UnsupportedOperationException();
    }
}

这里的MenuComponent定义为抽象类,因为有一些共有的属性和行为要在该类中实现,Menu和MenuItem类就可以只覆盖自己感兴趣的方法,而不用搭理不需要或者不感兴趣的方法,举例来说,Menu类可以包含子菜单,因此需要覆盖add()、remove()、getChild()方法,但是MenuItem就不应该有这些方法。这里给出的默认实现是抛出异常,你也可以根据自己的需要改写默认实现。

public class Menu extends MenuComponent {

    private List<MenuComponent> menuComponentList;

    public Menu(String name,int level){
        this.level = level;
        this.name = name;
        menuComponentList = new ArrayList<MenuComponent>();
    }

    @Override
    public void add(MenuComponent menuComponent) {
        menuComponentList.add(menuComponent);
    }

    @Override
    public void remove(MenuComponent menuComponent) {
        menuComponentList.remove(menuComponent);
    }

    @Override
    public MenuComponent getChild(int i) {
        return menuComponentList.get(i);
    }

    @Override
    public void print() {

        for (int i = 1; i < level; i++) {
            System.out.print("--");
        }
        System.out.println(name);
        for (MenuComponent menuComponent : menuComponentList) {
            menuComponent.print();
        }
    }
}

Menu类已经实现了除了getName方法的其他所有方法,因为Menu类具有添加菜单,移除菜单和获取子菜单的功能。

public class MenuItem extends MenuComponent {

    public MenuItem(String name,int level) {
        this.name = name;
        this.level = level;
    }

    @Override
    public void print() {
        for (int i = 1; i < level; i++) {
            System.out.print("--");
        }
        System.out.println(name);
    }
}

MenuItem是菜单项,不能再有子菜单,所以添加菜单,移除菜单和获取子菜单的功能并不能实现。

组合模式的分类

在使用组合模式时,根据抽象构件类的定义形式,我们可将组合模式分为透明组合模式和安全组合模式两种形式。

  • 透明组合模式

    透明组合模式中,抽象根节点角色中声明了所有用于管理成员对象的方法,比如在示例中 MenuComponent 声明了 addremovegetChild 方法,这样做的好处是确保所有的构件类都有相同的接口。透明组合模式也是组合模式的标准形式。

    透明组合模式的缺点是不够安全,因为叶子对象和容器对象在本质上是有区别的,叶子对象不可能有下一个层次的对象,即不可能包含成员对象,因此为其提供 add()、remove() 等方法是没有意义的,这在编译阶段不会出错,但在运行阶段如果调用这些方法可能会出错(如果没有提供相应的错误处理代码)

  • 安全组合模式

    在安全组合模式中,在抽象构件角色中没有声明任何用于管理成员对象的方法,而是在树枝节点 Menu 类中声明并实现这些方法。安全组合模式的缺点是不够透明,因为叶子构件和容器构件具有不同的方法,且容器构件中那些用于管理成员对象的方法没有在抽象构件类中定义,因此客户端不能完全针对抽象编程,必须有区别地对待叶子构件和容器构件。

在这里插入图片描述

优点

  • 组合模式可以清楚地定义分层次的复杂对象,表示对象的全部或部分层次,它让客户端忽略了层次的差异,方便对整个层次结构进行控制。
  • 客户端可以一致地使用一个组合结构或其中单个对象,不必关心处理的是单个对象还是整个组合结构,简化了客户端代码。
  • 在组合模式中增加新的树枝节点和叶子节点都很方便,无须对现有类库进行任何修改,符合“开闭原则”。
  • 组合模式为树形结构的面向对象实现提供了一种灵活的解决方案,通过叶子节点和树枝节点的递归组合,可以形成复杂的树形结构,但对树形结构的控制却非常简单。

使用场景

组合模式正是应树形结构而生,所以组合模式的使用场景就是出现树形结构的地方。比如:文件目录显示,多级目录呈现等树形结构数据的操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/15514.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机组成原理4.2.2汉明码

编码的最小距离 奇校验和偶校验 看1的个数是奇数 还是偶数 汉明码 汉明码的配置 根据不等式&#xff0c;确定增添几位&#xff0c;根据指数放置增添位 汉明码的检错 分不同检测小组 分组规则&#xff1a;哪位为’1‘就是哪组元素。 1号位为‘1’的都是第一组元素&#…

基于COM组件实现C#调用C++类对象过程中的注意事项

目录 一、基于COM的调用原理二、注意事项如何在C ATL中有效添加方法与属性如何让C#调用C中的属性&#xff08;.idl中声明属性&#xff09;如何对变量类型进行转换C#如何获取C类中的参数变量 一、基于COM的调用原理 调用原理&#xff1a;首先基于C ATL模板类&#xff0c;实现需…

【网络进阶】服务器模型Reactor与Proactor

文章目录 1. Reactor模型2. Proactor模型3. 同步IO模拟Proactor模型 在高并发编程和网络连接的消息处理中&#xff0c;通常可分为两个阶段&#xff1a;等待消息就绪和消息处理。当使用默认的阻塞套接字时&#xff08;例如每个线程专门处理一个连接&#xff09;&#xff0c;这两…

【redis】redis分布式锁(二)可重入锁+设计模式

【redis】redis分布式锁&#xff08;二&#xff09;可重入锁 文章目录 【redis】redis分布式锁&#xff08;二&#xff09;可重入锁前言一、可重入锁&#xff08;又名递归锁&#xff09;1、说明&#xff1a;2、分开解释&#xff1a;3、可重入锁的种类隐式锁&#xff08;即synch…

【软件测试】测试用例的设计

文章目录 一. 针对没有需求的案例来设计测试用例二. 针对有需求的案例来设计测试用例1. 穷举法2. 等价类3. 边界值4. 判定表法5. 场景设计法5.1 简介5.2 基本设计步骤5.3 基本流和备选流5.4 使用场景5.5 优缺点5.6 实例 6. 错误猜测法 一. 针对没有需求的案例来设计测试用例 针…

深度强化学习——蒙特卡洛算法(6)

注&#xff1a;本章的内容作为补充插曲&#xff0c;大家可以选看&#xff0c;不过还是建议把最后一个使用蒙特卡洛近似求期望稍微看一下 蒙特卡洛是一大堆随机算法&#xff0c;通过随机样本来估算真实值 使用随机样本来近似Π 1、在[a,b]做随机均匀抽样&#xff0c;抽出n个样…

YOLO物体检测系列1.经典方法概述及评价指标体现

1. 深度学习经典检测方法&#xff1a; two-stage(两阶段)&#xff1a; Faster-rcnn Mask-RCNN系列 one-stage(单阶段)&#xff1a;Yolo系列 两阶段&#xff1a;一阶段实现RPN候选区域预选 二阶段基于候选区域再进行检测回归分类任务 单阶段&#xff1a;一个CNN卷积网络实现检测…

C++线程的简单学习及了解

此篇文章只是线程的简单了解。 文章目录 前言一、线程的优缺点二、C线程库 1.thread类的简单介绍2.线程函数参数总结 前言 什么是线程&#xff1f; 在一个程序里的一个执行路线就叫做线程&#xff08;thread&#xff09;。更准确的定义是&#xff1a;线程是“一个进程内部的控…

day3 TCP/IP协议与五层体系结构

TCP / IP 四层体系结构 TCP / IP工作流程&#xff1a; 现在互联网使用的 TCP/IP 体系结构已经发生了演变&#xff0c;即某些应用程序可以直接使用 IP 层&#xff0c;或甚至直接使用最下面的网络接口层。 沙漏型展示&#xff1a; 五层体系结构 各层的主要功能 应用层&#xff1…

搭建外网minecraft服务器方案

很多minecraft服务器主都想自己搭建一个外网可以访问的minecraft服务器&#xff0c;在没有外网IP的情况下&#xff0c;一般都是使用Logmein Hamachi方案。这种方案有它的弊端&#xff0c;需要客户机安装Hamachi&#xff0c;十分不方便。另外&#xff0c;免费版只支持5人&#x…

mysql如何加行锁

一、概述 InnoDB 引擎是支持行级锁的&#xff0c;而 MyISAM 引擎并不支持行级锁&#xff0c;所以后面的内容都是基于 InnoDB 引擎的。当我们使用delete、update进行数据库删除、更新的时候&#xff0c;数据库会自动加上行锁。但是&#xff0c;行锁有时也会失效。 数据库版本&a…

笔记:计算机网络体系结构(OSI七层模型、TCP/IP五层协议)

计算机网络体系结构 计算机网络是一个复杂的、具有综合性技术的系统&#xff0c;它由计算机系统、通信处理机、通信线路和通信设备、操作系统以及网络协议等组成。为了更好地描述计算机网络结构&#xff0c;使计算机网络系统有条不紊地处理工作&#xff0c;需要定义一种较好的…

CH9121网络串口透传应用

概述 随着物联网技术的普及&#xff0c;越来越多的传统设备出现联网功能需求。串口作为使用较为广泛的一种通信接口&#xff0c;串口转以太网&#xff0c;进行远程数据传输需求逐渐显现出来。CH9121内部集成TCP/IP协议栈&#xff0c;无需编程&#xff0c;即可轻松实现网络数据…

【SWAT水文模型】SWAT水文模型建立及应用第二期:土地利用数据的准备

SWAT水文模型建立及应用&#xff1a;土地利用数据的准备 1 简介2 土地利用数据的下载2.1 数据下载方式2.1.1 中科院1km土地利用数据2.1.2 清华大学高精度土地利用数据 2.2 数据下载 3 土地利用数据的准备3.1 矢量转栅格3.2 土地利用类型的重分类3.3 土地利用分布图投影调整3.4 …

【LeetCode】213. 打家劫舍 II

213. 打家劫舍 II&#xff08;中等&#xff09; 思路 这道题是 198.打家劫舍 的拓展版&#xff0c;区别在于&#xff1a;本题的房间是环形排列&#xff0c;而198.题中的房间是单排排列。 将房间环形排列&#xff0c;意味着第一间房间和最后一间房间不能同时盗窃&#xff0c;因…

EPIT定时器实验(一)

EPIT定时器简介 EPIT&#xff1a;Enhanced Periodic Interrupt Timer&#xff0c;直译就是增强的周期中断定时器&#xff0c;它主要完成周期性中断定时的。 STM32里面的定时器有很多其它功能&#xff0c;比如输入捕获、PWM输出等&#xff0c;但是I.MX6U的的EPIT定时器只是完成…

【五一创作】数据可视化之美 ( 三 ) - 动图展示 ( Python Matlab )

1 Introduction 在我们科研学习、工作生产中&#xff0c;将数据完美展现出来尤为重要。 数据可视化是以数据为视角&#xff0c;探索世界。我们真正想要的是 — 数据视觉&#xff0c;以数据为工具&#xff0c;以可视化为手段&#xff0c;目的是描述真实&#xff0c;探索世界。 …

CSS布局之圣杯布局/双飞翼布局

&#x1f4dd;个人主页&#xff1a;爱吃炫迈 &#x1f48c;系列专栏&#xff1a;HTMLCSS &#x1f9d1;‍&#x1f4bb;座右铭&#xff1a;道阻且长&#xff0c;行则将至&#x1f497; 文章目录 圣杯布局HTML代码步骤CSS代码 双飞翼布局HTML代码步骤CSS代码 小结 圣杯布局 HTM…

Java --- springboot2的静态资源配置原理

目录 一、静态资源配置原理 1.1、配置类只有一个有参构造器 1.2、资源处理的默认规则 1.3、欢迎页的处理规则 一、静态资源配置原理 springboot启动默认加载xxxAutoConfiguration(自动配置) springmvc功能的自动配置类&#xff0c;生效 Configuration(proxyBeanMethods …

《编码——隐匿在计算机软硬件背后的语言》精炼——第13-14章(二进制减法器——1位存储器)

“成功不是最终的&#xff0c;失败不是致命的&#xff0c;勇气才是最关键的。” - 温斯顿丘吉尔 文章目录 如何实现减法计算机进行减法运算的逻辑借位的代替机制二进制下的替代机制 减法的电路实现 反馈与触发器电铃触发器R-S触发器 电平触发的D型触发器 如何实现减法 计算机进…