【STM32】MPU6050初始化常用寄存器说明及示例代码

        一、MPU6050常用配置寄存器

        1、电源管理寄存器1( PWR_MGMT_1
        此寄存器允许用户配置电源模式和时钟源。
        DEVICE_RESET :用于控制复位的比特位。设置为1时复位 MPU6050,内部寄存器恢复为默认值,复位结束后MPU硬件自动清零该位。
        SLEEP:用于控制 MPU6050 工作模式的比特位。MPU6050复位后该位置 1,即进入了低功耗睡眠模式。因此,设备上电复位后,我们要将该比特位置0以进入正常工作模式。
        TEMP_DIS:用于设置是否使能温度传感器的比特位。将该位置为0则使能温度传感器。
        CLKSEL[2:0]:用于设置系统时钟源的比特位。可选择使用内部8MHz晶振、外部晶振或陀螺仪时钟作为时钟源。 设备上电默认是使用内部 8M的RC晶振,但因其精度不高,官方推荐使用陀螺锁相环或者外部时间作为时钟源,以提高稳定性。一般设置 CLKSEL=001 即可。时钟源可根据下表进行选择:

//示例代码
MPU_Write_Byte(MPU_PWR_MGMT1_REG,0X80);	//复位MPU6050,设置电源管理寄存器 1(0X6B)的bit7 为 1
delay_ms(100);
MPU_Write_Byte(MPU_PWR_MGMT1_REG,0X00);	//唤醒MPU6050,设置电源管理寄存器 1(0X6B)为 0X00    
MPU_Write_Byte(MPU_PWR_MGMT1_REG,0X01);	//设置CLKSEL,PLL X轴为参考, 设置电源管理寄存器 1(0X1B)bit2、bit1、bit0 为 001

        2、陀螺仪配置寄存器( GYRO_CONFIG


        此寄存器用于触发陀螺仪自检,并配置陀螺仪的满量程范围。
        我们重点关注FS_SEL[1:0]这两个位,它用于设置陀螺仪的满量程范围,一般设置为 3,即±2000°/S,因为陀螺仪的 ADC 为 16 位分辨率,所以得到灵敏度为:65536/4000=16.4LSB/(°/S)。

//示例代码
MPU_Set_Gyro_Fsr(3);	//陀螺仪传感器,±2000dps, 设置陀螺仪配置寄存器(0X1B)bit4、bit3 为 3 

        3、加速度传感器配置寄存器( ACCEL_CONFIG


        此寄存器用于触发加速度计的自检,并配置加速度计的满量程范围,还可配置了数字高通滤波器(DHPF)。
        我们重点关注AFS_SEL[1:0]这两个位,用于设置加速度传感器的满量程范围,一般设置为 0,即±2g,因为加速度传感器的ADC 也是 16 位,所以得到灵敏度为:65536/4=16384LSB/g。

//示例代码
MPU_Set_Accel_Fsr(0);	  //加速度传感器,±2g ,  设置加速度传感器配置寄存器(0X1C)bit4、bit3 为 0

        4、FIFO 使能寄存器( FIFO_EN

        此寄存器用于控制 FIFO 使能,确定将哪些传感器测量值加载到FIFO缓冲区中。如果传感器各自的FIFO_EN位在该寄存器中被设置为1,则存储在传感器数据寄存器(寄存器59至96)内的数据将被加载到FIFO缓冲器中。这些传感器按照寄存器25中定义的采样速率进行采样。
        实际应用中,在简单读取传感器数据的时候,可以不用 FIFO,设置对应位为 0 即可禁止 FIFO,设置为 1 则使能 FIFO。加速度传感器的 3 个轴,全由 1个位(ACCEL_FIFO_EN)控制,只要该位置 1,则加速度传感器的三个通道都开启 FIFO了。

        5、陀螺仪采样率分频寄存器( SMPRT_DIV
        该寄存器用于设置 MPU6050 的陀螺仪采样频率,计算公式为:
                采样频率 = 陀螺仪输出频率 / (1+SMPLRT_DIV)
      陀螺仪的输出频率,是 1Khz 或者 8Khz,与数字低通滤波器(DLPF)的设置有关:当 DLPF_CFG=0/7 的时候,频率为 8Khz,其他情况是 1Khz。 一般情况下,DLPF 滤波带宽设置为采样率的 1/2 。
        采样率,我们假定设置为 50Hz,那么采样分频器值 SMPLRT_DIV = 1000/50-1 = 19。
        注意:加速度计的输出速率为1 kHz。这意味着,对于大于1 kHz的采样率,相同的加速度计采样数据可以不止一次地输出到FIFO、DMP和传感器寄存器。

        6、配置寄存器( CONFIG

        对于这个寄存器,我们主要关注DLPF_CFG[2:0],即数字低通滤波器(DLPF)的设置位,加速度计和陀螺仪都是根据这三个比特位的配置进行过滤的。DLPF_CFG[2:0] 不同配置对应的过滤情况如下表所示:

        加速度传感器的输出速率(Fs)固定是 1Khz,而陀螺仪传感器的输出速率(Fs)根据 DLPF_CFG 的配置有所不同。一般我们设置陀螺仪传感器的带宽为其采样率的一半,如前面所说的,如果设置采样率为 50Hz,那么带宽就应该设置为 25Hz,取近似值 20Hz,就应该设置 DLPF_CFG = 4 (二进制 100)。

        7、电源管理寄存器2( PWR_MGMT_2

        此寄存器允许用户在仅加速计低功率模式下配置唤醒频率。这个寄存器还允许用户将加速度计和陀螺仪的各个轴进入待机模式。一般情况下配置为 0 。可根据实际情况设置,详细内容可参考寄存器手册。

        8、陀螺仪数据输出寄存器(6个8位寄存器,0x43~0x48)
        陀螺仪传感器数据输出寄存器由6个8位寄存器组成,分别存储X/Y/Z三个轴的陀螺仪传感器数据,高字节在前,低字节在后。
        每个16位陀螺仪测量都有一个在FS_SEL(寄存器27)中定义的满量程。对于每个全尺度设置,陀螺仪每LSB的灵敏度如下表所示

        9、加速度传感器数据输出寄存器(6个,0x3B~0x40)

        加速度传感器数据输出寄存器由6个8位寄存器组成,输出X/Y/Z三个轴的加速度传感器值,高字节在前,低字节在后。
        每个
16位加速度计测量都有一个在ACCEL_FS(寄存器28)中定义的完整尺度。对于每个完整的尺度设置,ACCEL_xOUT中每LSB加速度计的灵敏度如下表所示。

        10、温度传感器数据输出寄存器( TEMP_OUT_H and TEMP_OUT_L

        温度换算公式为:   Temperature = 36.53 + regval/340,  其中,Temperature为计算得到的温度值,单位为℃,regval为从0X41和0X42读到的温度传感器有符号值。

        二、MPU6050初始化

        1、初始化 IIC 接口。MPU6050 采用 I2C 与 STM32F1 通信,需要先初始化与 MPU6050 连接的 SDA和 SCL 数据线。
        2复位并唤醒 MPU6050。复位操作使 MPU6050 内部所有寄存器恢复默认值,通过对电源管理寄存器 1(0x6B)的DEVICE_RESET置 1 实现。 复位结束后,电源管理寄存器 1 恢复默认值(0x40),然后必须设置该寄存器为0x00,以唤醒 MPU6050,进入正常工作模式。
       3、设置角速度传感器(陀螺仪)和加速度传感器的满量程范围。通过陀螺仪配置寄存器(0x1B)和加速度传感器配置寄存器(0x1C)设置,一般设置陀螺仪的满量程范围为±2000dps,加速度传感器的满量程范围为±2g。
        4、设置其他参数。需要配置的参数还有:关闭中断、关闭 AUX IIC 接口(没有磁力计)、禁止 FIFO、设置陀螺仪采样率和设置数字低通滤波器(DLPF)等。如果不采用中断方式读取数据,则关闭中断;如果不使用 AUX IIC 接口外接其他传感器,则关闭此接口。可以分别通过中断使能寄存器(0x38)和用户控制寄存器(0x6A)控制。MPU6050 可以使用 FIFO 存储传感器数据,如果不使用则可以关闭所有 FIFO 通道,可能通过 FIFO 使能寄存器(0x23)控制,默认都置 0(即禁止 FIFO),所以用默认值就可以了。陀螺仪采样率通过采样率分频寄存器(0x19)控制。数字低通滤波器(DLPF)则通过配置寄存器(0x1A)设置,一般设置 DLPF 带宽为采样率的 1/2 。
        5、配置系统时钟源并使能角速度(陀螺仪)传感器和加速度传感器。系统时钟源同样是通过电源管理寄存器 1(0x1B)来设置,该寄存器的最低三位用于设置系统时钟源选择,默认值是 0(内部 8M RC 震荡),一般设置为 1,选择 x 轴陀螺 PLL 作为时钟源,以获得更高精度的时钟。同时,使能角速度传感器和加速度传感器,这两个操作通过电源管理寄存器 2(0x6C)来设置,设置对应位为 0 即可开启。
        至此,MPU6050 的初始化就基本完成了,可以正常工作了(其他未设置的寄存器全部采用默认值即可)。

        三、MPU6050初始化示例代码
//部分宏定义数据
//MPU6050 AD0控制脚
#define MPU_AD0_CTRL			PAout(15)	//控制AD0电平,从而控制MPU地址

//#define MPU_ACCEL_OFFS_REG		0X06	//accel_offs寄存器,可读取版本号,寄存器手册未提到
//#define MPU_PROD_ID_REG			0X0C	//prod id寄存器,在寄存器手册未提到
#define MPU_SELF_TESTX_REG		0X0D	//自检寄存器X
#define MPU_SELF_TESTY_REG		0X0E	//自检寄存器Y
#define MPU_SELF_TESTZ_REG		0X0F	//自检寄存器Z
#define MPU_SELF_TESTA_REG		0X10	//自检寄存器A
#define MPU_SAMPLE_RATE_REG		0X19	//采样频率分频器
#define MPU_CFG_REG				0X1A	//配置寄存器
#define MPU_GYRO_CFG_REG		0X1B	//陀螺仪配置寄存器
#define MPU_ACCEL_CFG_REG		0X1C	//加速度计配置寄存器
#define MPU_MOTION_DET_REG		0X1F	//运动检测阀值设置寄存器
#define MPU_FIFO_EN_REG			0X23	//FIFO使能寄存器
#define MPU_I2CMST_CTRL_REG		0X24	//IIC主机控制寄存器
#define MPU_I2CSLV0_ADDR_REG	0X25	//IIC从机0器件地址寄存器
#define MPU_I2CSLV0_REG			0X26	//IIC从机0数据地址寄存器
#define MPU_I2CSLV0_CTRL_REG	0X27	//IIC从机0控制寄存器
#define MPU_I2CSLV1_ADDR_REG	0X28	//IIC从机1器件地址寄存器
#define MPU_I2CSLV1_REG			0X29	//IIC从机1数据地址寄存器
#define MPU_I2CSLV1_CTRL_REG	0X2A	//IIC从机1控制寄存器
#define MPU_I2CSLV2_ADDR_REG	0X2B	//IIC从机2器件地址寄存器
#define MPU_I2CSLV2_REG			0X2C	//IIC从机2数据地址寄存器
#define MPU_I2CSLV2_CTRL_REG	0X2D	//IIC从机2控制寄存器
#define MPU_I2CSLV3_ADDR_REG	0X2E	//IIC从机3器件地址寄存器
#define MPU_I2CSLV3_REG			0X2F	//IIC从机3数据地址寄存器
#define MPU_I2CSLV3_CTRL_REG	0X30	//IIC从机3控制寄存器
#define MPU_I2CSLV4_ADDR_REG	0X31	//IIC从机4器件地址寄存器
#define MPU_I2CSLV4_REG			0X32	//IIC从机4数据地址寄存器
#define MPU_I2CSLV4_DO_REG		0X33	//IIC从机4写数据寄存器
#define MPU_I2CSLV4_CTRL_REG	0X34	//IIC从机4控制寄存器
#define MPU_I2CSLV4_DI_REG		0X35	//IIC从机4读数据寄存器

#define MPU_I2CMST_STA_REG		0X36	//IIC主机状态寄存器
#define MPU_INTBP_CFG_REG		0X37	//中断/旁路设置寄存器
#define MPU_INT_EN_REG			0X38	//中断使能寄存器
#define MPU_INT_STA_REG			0X3A	//中断状态寄存器

#define MPU_ACCEL_XOUTH_REG		0X3B	//加速度值,X轴高8位寄存器
#define MPU_ACCEL_XOUTL_REG		0X3C	//加速度值,X轴低8位寄存器
#define MPU_ACCEL_YOUTH_REG		0X3D	//加速度值,Y轴高8位寄存器
#define MPU_ACCEL_YOUTL_REG		0X3E	//加速度值,Y轴低8位寄存器
#define MPU_ACCEL_ZOUTH_REG		0X3F	//加速度值,Z轴高8位寄存器
#define MPU_ACCEL_ZOUTL_REG		0X40	//加速度值,Z轴低8位寄存器

#define MPU_TEMP_OUTH_REG		0X41	//温度值高八位寄存器
#define MPU_TEMP_OUTL_REG		0X42	//温度值低8位寄存器

#define MPU_GYRO_XOUTH_REG		0X43	//陀螺仪值,X轴高8位寄存器
#define MPU_GYRO_XOUTL_REG		0X44	//陀螺仪值,X轴低8位寄存器
#define MPU_GYRO_YOUTH_REG		0X45	//陀螺仪值,Y轴高8位寄存器
#define MPU_GYRO_YOUTL_REG		0X46	//陀螺仪值,Y轴低8位寄存器
#define MPU_GYRO_ZOUTH_REG		0X47	//陀螺仪值,Z轴高8位寄存器
#define MPU_GYRO_ZOUTL_REG		0X48	//陀螺仪值,Z轴低8位寄存器

#define MPU_I2CSLV0_DO_REG		0X63	//IIC从机0数据寄存器
#define MPU_I2CSLV1_DO_REG		0X64	//IIC从机1数据寄存器
#define MPU_I2CSLV2_DO_REG		0X65	//IIC从机2数据寄存器
#define MPU_I2CSLV3_DO_REG		0X66	//IIC从机3数据寄存器

#define MPU_I2CMST_DELAY_REG	0X67	//IIC主机延时管理寄存器
#define MPU_SIGPATH_RST_REG		0X68	//信号通道复位寄存器
#define MPU_MDETECT_CTRL_REG	0X69	//运动检测控制寄存器
#define MPU_USER_CTRL_REG		0X6A	//用户控制寄存器
#define MPU_PWR_MGMT1_REG		0X6B	//电源管理寄存器1
#define MPU_PWR_MGMT2_REG		0X6C	//电源管理寄存器2 
#define MPU_FIFO_CNTH_REG		0X72	//FIFO计数寄存器高八位
#define MPU_FIFO_CNTL_REG		0X73	//FIFO计数寄存器低八位
#define MPU_FIFO_RW_REG			0X74	//FIFO读写寄存器
#define MPU_DEVICE_ID_REG		0X75	//器件ID寄存器
 
//如果AD0脚(9脚)接地,IIC地址为0X68(不包含最低位).
//如果接V3.3,则IIC地址为0X69(不包含最低位).
#define MPU_ADDR				0X68

//初始化MPU6050
//返回值:0,成功
//    其他,错误代码
u8 MPU_Init(void)
{ 
	u8 res;
	MPU_AD0_CTRL=0;			//控制MPU6050的AD0脚为低电平,从机地址为:0x68
	MPU_IIC_Init();//初始化IIC总线
	MPU_Write_Byte(MPU_PWR_MGMT1_REG,0x80);	//复位MPU6050 , 设置电源管理寄存器 1(0x6B)的bit7 为 1
	delay_ms(100);
	MPU_Write_Byte(MPU_PWR_MGMT1_REG,0x00);	//唤醒MPU6050, 设置电源管理寄存器 1(0x6B)为 0X00    
	MPU_Set_Gyro_Fsr(3);	 //陀螺仪传感器,±2000dps, 设置陀螺仪配置寄存器(0x1B)bit4、bit3 为 3 
	MPU_Set_Accel_Fsr(0);	//加速度传感器,±2g, 设置加速度传感器配置寄存器(0x1C)bit4、bit3 为 0
	MPU_Set_Rate(50);	 //设置采样率50Hz
	MPU_Write_Byte(MPU_INT_EN_REG,0x00);	//关闭所有中断
	MPU_Write_Byte(MPU_USER_CTRL_REG,0x00);	//I2C主模式关闭
	MPU_Write_Byte(MPU_FIFO_EN_REG,0x00);	//关闭FIFO, 设置FIFO 使能寄存器(0X23)为 0X00
	MPU_Write_Byte(MPU_INTBP_CFG_REG,0x80);	//INT引脚低电平有效
	res=MPU_Read_Byte(MPU_DEVICE_ID_REG);
	if(res==MPU_ADDR)//器件ID正确
	{
		MPU_Write_Byte(MPU_PWR_MGMT1_REG,0x01);	//设置CLKSEL,PLL X轴为参考, 设置电源管理寄存器 1(0X1B)bit2、bit1、bit0 为 001
		MPU_Write_Byte(MPU_PWR_MGMT2_REG,0x00);	//加速度与陀螺仪都工作, 设置电源管理寄存器2(0X6C) 为 0X00
		MPU_Set_Rate(50);	 //设置采样率为50Hz                          
	}else return 1;
	return 0;
}
// 以上为MPU6050初始化部分

//初始化IIC
void MPU_IIC_Init(void)
{					     
  GPIO_InitTypeDef  GPIO_InitStructure;	
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);//先使能外设IO PORTB时钟 
		
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10|GPIO_Pin_11;	 // 端口配置
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
  GPIO_Init(GPIOB, &GPIO_InitStructure);		 //根据设定参数初始化GPIO 
	
  GPIO_SetBits(GPIOB,GPIO_Pin_10|GPIO_Pin_11);	 //PB10,PB11 输出高	
 
}

//IIC写一个字节 
//reg:寄存器地址
//data:数据
//返回值:0,正常
//    其他,错误代码
u8 MPU_Write_Byte(u8 reg,u8 data) 				 
{ 
    MPU_IIC_Start(); 
	MPU_IIC_Send_Byte((MPU_ADDR<<1)|0);//发送器件地址+写命令	
	if(MPU_IIC_Wait_Ack())	//等待应答
	{
		MPU_IIC_Stop();		 
		return 1;		
	}
    MPU_IIC_Send_Byte(reg);	//写寄存器地址
    MPU_IIC_Wait_Ack();		//等待应答 
	MPU_IIC_Send_Byte(data);//发送数据
	if(MPU_IIC_Wait_Ack())	//等待ACK
	{
		MPU_IIC_Stop();	 
		return 1;		 
	}		 
    MPU_IIC_Stop();	 
	return 0;
}

//设置MPU6050陀螺仪传感器满量程范围
//fsr:0,±250dps;1,±500dps;2,±1000dps;3,±2000dps
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_Gyro_Fsr(u8 fsr)
{
	return MPU_Write_Byte(MPU_GYRO_CFG_REG,fsr<<3);//设置陀螺仪满量程范围  
}

//设置MPU6050加速度传感器满量程范围
//fsr:0,±2g;1,±4g;2,±8g;3,±16g
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_Accel_Fsr(u8 fsr)
{
	return MPU_Write_Byte(MPU_ACCEL_CFG_REG,fsr<<3);//设置加速度传感器满量程范围  
}

//设置MPU6050的采样率(假定陀螺仪输出频率Fs=1KHz)
//rate:4~1000(Hz)
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_Rate(u16 rate)
{
	u8 data;
	if(rate>1000)rate=1000;
	if(rate<4)rate=4;
	data=1000/rate-1;         //由采样频率 = 陀螺仪输出频率 / (1+SMPLRT_DIV)得 SMPLRT_DIV= 陀螺仪输出频率 / 采样频率 - 1
	data=MPU_Write_Byte(MPU_SAMPLE_RATE_REG,data);	//设置数字低通滤波器
 	return MPU_Set_LPF(rate/2);	//自动设置LPF为采样率的一半
}

//IIC读一个字节 
//reg:寄存器地址 
//返回值:读到的数据
u8 MPU_Read_Byte(u8 reg)
{
	u8 res;
    MPU_IIC_Start(); 
	MPU_IIC_Send_Byte((MPU_ADDR<<1)|0);//发送器件地址+写命令	
	MPU_IIC_Wait_Ack();		//等待应答 
    MPU_IIC_Send_Byte(reg);	//写寄存器地址
    MPU_IIC_Wait_Ack();		//等待应答
    MPU_IIC_Start();
	MPU_IIC_Send_Byte((MPU_ADDR<<1)|1);//发送器件地址+读命令	
    MPU_IIC_Wait_Ack();		//等待应答 
	res=MPU_IIC_Read_Byte(0);//读取数据,发送nACK 
    MPU_IIC_Stop();			//产生一个停止条件 
	return res;		
}

        四、结语。
        本文内容部分参考网络大神提供的代码,如有权利限制,请及时联系。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/921765.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

隐私友好型分析平台Plausible Analytics

什么是 Plausible Analytics &#xff1f; Plausible Analytics 是一个简单、轻量级&#xff08;小于1KB&#xff09;、开源且隐私友好的网站分析工具&#xff0c;旨在作为 Google Analytics 的替代品。它不使用 cookies 并且完全符合 GDPR、CCPA 和 PECR 法规&#xff0c;因此…

Flutter:RotationTransition旋转动画

配置vsync&#xff0c;需要实现一下with SingleTickerProviderStateMixinclass _MyHomePageState extends State<MyHomePage> with SingleTickerProviderStateMixin{// 定义 AnimationController late AnimationController _controller;overridevoid initState() {super…

【大数据学习 | Spark-Core】Spark提交及运行流程

spark的集群运行结构 我们要选择第一种使用方式 命令组成结构 spark-submit [选项] jar包 参数 standalone集群能够使用的选项。 --master MASTER_URL #集群地址 --class class_name #jar包中的类 --executor-memory MEM #executor的内存 --executor-cores NUM # executor的…

青训营刷题笔记16

问题描述 小R从班级中抽取了一些同学&#xff0c;每位同学都会给出一个数字。已知在这些数字中&#xff0c;某个数字的出现次数超过了数字总数的一半。现在需要你帮助小R找到这个数字。 测试样例 样例1&#xff1a; 输入&#xff1a;array [1, 3, 8, 2, 3, 1, 3, 3, 3] 输出…

C4D技巧总结

鼠标右键单击这两个小箭头可以把参数恢复到默认值&#xff01; 对象坐标 全局坐标 按住Alt键&#xff0c;点击挤压&#xff08;或者其他绿色的图标&#xff09;&#xff0c;可以快速形成父子级效果&#xff01;

(动画)Qt控件 QLCDNumer

文章目录 LCD Number1. 介绍2. 核心属性3 . 代码实现:倒计时1. 在界⾯上创建⼀个 QLCDNumber , 初始值设为 10.2. 修改 widget.h 代码, 创建⼀个 QTimer 成员, 和⼀个 updateTime 函数3. 修改 widget.cpp, 在构造函数中初始化 QTimer4. 修改 widget.cpp, 实现 updateTime 4. 动…

draggable的el-dialog实现对话框标题可以选择

请看图 这个对话框使用了el-dialog并且draggable属性设置成了true&#xff0c;所以标题栏这里就可以拖动&#xff0c;现在用户想选中标题栏的文本进而复制。我看到这个需求头都大了。 我能想到的方案有三个&#xff1a;1. 取消draggable为true 2. 标题文案后面加一个复制按钮 …

DeepSpeed-chat RLHF实战

轩辕-6bRLHF落地实战 模型介绍&#xff1a;轩辕-6B 模型库 (modelscope.cn) 1.1偏好数据集构建 ​ 1.1.1Prompt构建 1.1.2 Response生成 保证RM训练数据和测试数据分布一致 使用模型来生成response&#xff0c;为了评价response的质量&#xff0c;可以提高采样参数中的…

Java-05 深入浅出 MyBatis - 配置深入 动态 SQL 参数、循环、片段

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 大数据篇正在更新&#xff01;https://blog.csdn.net/w776341482/category_12713819.html 目前已经更新到了&#xff1a; MyBatis&#xff…

Prompting LLMs to Solve Complex Tasks: A Review

文章目录 题目简介任务分解未来方向结论 题目 促使 LLM 解决复杂任务&#xff1a; 综述 论文地址&#xff1a;https://www.intjit.org/cms/journal/volume/29/1/291_3.pdf 简介 大型语言模型 (LLM) 的最新趋势显而易见&#xff0c;这体现在大型科技公司的投资以及媒体和在线社…

恋爱通信史之完整性

在前面的章节中&#xff0c;介绍了对通信消息的加密&#xff0c;可以保证保密性(机密性)。虽说中间人无法解密通信消息的内容&#xff0c;但是可以篡改通信的消息。在接受者视角来看&#xff0c;是无法识别通信消息是否被篡改。因此&#xff0c;必须引入一种机制&#xff0c;保…

Easyexcel(5-自定义列宽)

相关文章链接 Easyexcel&#xff08;1-注解使用&#xff09;Easyexcel&#xff08;2-文件读取&#xff09;Easyexcel&#xff08;3-文件导出&#xff09;Easyexcel&#xff08;4-模板文件&#xff09;Easyexcel&#xff08;5-自定义列宽&#xff09; 注解 ColumnWidth Data…

C#调用C++ DLL方法之C++/CLI(托管C++)

托管C与C/CLI前世今生 C/CLI (C/Common Language Infrastructure) 是一种用于编写托管代码的语言扩展&#xff0c;它是为了与 .NET Framework 进行互操作而设计的。C/CLI 是 C 的一种方言&#xff0c;它引入了一些新的语法和关键字&#xff0c;以便更好地支持 .NET 类型和垃圾…

家庭智慧工程师:如何通过科技提升家居生活质量

在今天的数字化时代&#xff0c;家居生活已经不再只是简单的“住”的地方。随着物联网&#xff08;IoT&#xff09;、人工智能&#xff08;AI&#xff09;以及自动化技术的快速发展&#xff0c;越来越多的家庭开始拥抱智慧家居技术&#xff0c;将他们的家变得更加智能化、便捷和…

【Unity踩坑】出现d3d11问题导致编辑器崩溃

升级到Unity 6&#xff0c;有时出现下面这种D3D11的问题&#xff0c;会导致编辑器崩溃。 有人总结了这个问题的解决方法&#xff0c;可以做为参考&#xff1a; Failed to present D3D11 swapchain due to device reset/removed. List of Solutions - Unity Engine - Unity Dis…

CSP/信奥赛C++语法基础刷题训练(23):洛谷P1217:[USACO1.5] 回文质数 Prime Palindromes

CSP/信奥赛C语法基础刷题训练&#xff08;23&#xff09;&#xff1a;洛谷P1217&#xff1a;[USACO1.5] 回文质数 Prime Palindromes 题目描述 因为 151 151 151 既是一个质数又是一个回文数&#xff08;从左到右和从右到左是看一样的&#xff09;&#xff0c;所以 151 151 …

SCTransNet验证测试

SCTransNet 是PRCV 2024、ICPR 2024 Track 1、ICPR 2024 Track 2 三项比赛冠军方案的 Baseline, 同时也是多个优胜算法的Baselines. Bilibili 视频分享 【工作分享】SCTransNet:面向红外弱小目标检测的空间 - 通道交叉 Transformer_哔哩哔哩_bilibili 极市平台 推文分享 …

【C++】继承(inheritance)

引入 假设我们有一个动物类 class Animal { public:int age;void eat() {std::cout << "吃东西&#xff01;" << std::endl;} };又想写一个狗类&#xff0c;它也有年龄&#xff0c;也会吃&#xff0c;除此之外还有种类 class Dog { public:const char…

ThinkPad t61p 作SMB服务器,打印服务器,pc ,android ,ipad利用此服务器互传文件

1.在t61p上安装win7 2,配置好smb 服务 3.再安装好打印驱动程序 4.pc与win7利用系统的网络互相发现,映射为硬盘使用。 5.android&#xff0c;ipad安装ES文件浏览器访问win7 共享文件夹&#xff0c;互传文件。 6.android手机安装FE文件浏览器&#xff0c;可以利用花生壳外网…

Vue.js基础——贼简单易懂!!(响应式 ref 和 reactive、v-on、v-show 和 v-if、v-for、v-bind)

Vue.js是一个渐进式JavaScript框架&#xff0c;用于构建用户界面。它专门设计用于Web应用程序&#xff0c;并专注于视图层。Vue允许开发人员创建可重用的组件&#xff0c;并轻松管理状态和数据绑定。它还提供了一个虚拟DOM系统&#xff0c;用于高效地渲染和重新渲染组件。Vue以…