GoLong的学习之路,进阶,标准库之并发(context)补充并发三部曲,你真的明白context吗?

其实对于,context来说,如果只是用来做并发处理就有些不太合适。因为对于golang来说,context应用场景不仅在并发有用,并且在网络链接http处理,gorm中都有体现。但是其实,本质来说。以上这些场景其实都是并发goroutine 的应用。故在这里我只讲context在并发的情况。

文章目录

  • Context
  • Context的出现
  • context的设计思想
  • context的使用
    • 初始化:(首先就是要定义根节点)
    • with四系列
      • WithCancel
      • WithDeadline
      • WithTimeout
      • WithValue

Context

Context这个其实在其他语言都有涉及,比如:

  • Spirngboot ApplicationContext
  • flutterBuildContext
  • AndroidContext
  • Kotlin CoroutineContext
  • .NETCancellationSourceToken

可以说很多很多了。但是他们的用法不尽相同。而 go中的 context 的设计思想以及应用场景非常的新颖。为什么这么说呢?这就要说go中最大的特点:goroutine 协程。

go以协程而闻名。

而如何有效控制goroutine (协程),这个问题有很多不同解释:

比如:

  • (1)有效控制:协程之间对于共享变量的控制------------:> 加锁操作
  • (2)有效控制:协程之间数据的交互------------------------:> channle
  • (3)有效控制:协程之间先后顺序---------------------------:> 阻塞(select,sycn包)
  • (4)有效控制:协程之间错误信息---------------------------:> recovererrgroup
  • (5)有效控制:协程之间的嵌套------------------------------:> context(今天要重点说明的)

上面的这些1,2,3,4点在我的并发三部曲中有体现。感兴趣的可以移步

Context的出现

一个场景问题:如何在主协程中,控制,从协程的开启和结束呢?

方案一、

用时间去控制(很明显这种方式,并不是很恰当)(时间设置过早或者过晚都有问题,很难控制)

方案二、

提供一个全局变量,用这个全局变量去控制从协程的开始和结束

package main

import (
	"fmt"
	"sync"
	"time"
)

var wg sync.WaitGroup
var exit bool

func worker() {
	for {
		fmt.Println("worker")
		time.Sleep(time.Second)
		if exit {
			break
		}
	}
	wg.Done()
}

func main() {
	wg.Add(1)
	go worker()
	time.Sleep(time.Second * 3) // sleep3秒以免程序过快退出
	exit = true                 // 修改全局变量实现子goroutine的退出
	wg.Wait()
	fmt.Println("over")
}

全局变量方式存在的问题:

  1. 使用全局变量在跨包调用时不容易统一
  2. 如果worker中再启动goroutine,就不太好控制了

方案三、

既然能通过全局变量的方式去达到控制的目的,那么是不是可以用channle

通过通道(channle)去控制一个局部变量,用接收和发送的方式达到控制协程的目的

package main

import (
	"fmt"
	"sync"

	"time"
)

var wg sync.WaitGroup



func worker(exitChan chan struct{}) {
LOOP:
	for {
		fmt.Println("worker")
		time.Sleep(time.Second)
		select {
		case <-exitChan: // 等待接收上级通知
			break LOOP
		default:
		}
	}
	wg.Done()
}

func main() {
	var exitChan = make(chan struct{})
	wg.Add(1)
	go worker(exitChan)
	time.Sleep(time.Second * 3) // sleep3秒以免程序过快退出
	exitChan <- struct{}{}      // 给子goroutine发送退出信号
	close(exitChan)
	wg.Wait()
	fmt.Println("over")
}

管道方式存在的问题:

  1. 使用全局变量跨包调用时不容易实现规范和统一,需要维护一个共用的channel(太麻烦了)

综合:

就这些传统控制的手段,相信大家看见代码和我的解释,一定有所感受,但是我要说的是。这些解决方案,并非不可行。对于少量的goroutine来说这种方式未尝不可。

但是一旦嵌套了很多层。我们对于这种方式真的能合理控制—达到不 “ 然 ” 吗?(糊涂,混乱的意思)大佬除外

在这里插入图片描述
任务的 goroutine 层级越深,想要自己做退出信号感知和元数据共享就越难


所以我们需要一种优雅的方案来实现这样一种机制:

  • 上层任务取消后,所有的下层任务都会被取消
  • 中间某一层的任务取消后,只会将当前任务的下层任务取消,而不会影响上层的任务以及同级任务
  • 可以线程安全地在 goroutine 之间共享一些任务的元数据

所以为此 Go 官方在1.7 版本引入了 Context 来实现上面阐述的机制

context的设计思想

我们先看源码接口:

type Context interface {

    Deadline() (deadline time.Time, ok bool)

    Done() <-chan struct{}

    Err() error

    Value(key interface{}) interface{}
}

Context接口包含四个方法:

  • Deadline返回绑定当前context的任务被取消的截止时间;如果没有设定期限,将返回ok == false。
  • Done 当绑定当前context的任务被取消时,将返回一个关闭的channel;如果当前context不会被取消,将返回nil。
  • Err 如果Done返回的channel没有关闭,将返回nil;如果Done返回的channel已经关闭,将返回非空的值表示任务结束的原因。如果是context被取消,Err将返回Canceled;如果是context超时,Err将返回DeadlineExceeded。
  • Value 返回context存储的键值对中当前key对应的值,如果没有对应的key,则返回nil。

  1. Done方法返回的channel正是用来传递结束信号以抢占并中断当前任务;
  2. Deadline方法指示一段时间后当前goroutine是否会被取消;
  3. Err方法,来解释goroutine被取消的原因;
    • 如果当前Context被取消就会返回Canceled错误;
    • 如果当前Context超时就会返回DeadlineExceeded错误;
  4. Value则用于获取特定于当前任务树的额外信息;

首先我要说的是context的结构是一个树状结构。为了方便找到根节点,有定义了一个结构emptyCtx

emptyCtx是一个int类型的变量,但实现了context的接口。emptyCtx没有超时时间,不能取消,也不能存储任何额外信息,所以emptyCtx用来作为context树的根节点。

// An emptyCtx is never canceled, has no values, and has no deadline. It is not
// struct{}, since vars of this type must have distinct addresses.
type emptyCtx int

func (*emptyCtx) Deadline() (deadline time.Time, ok bool) {
    return
}

func (*emptyCtx) Done() <-chan struct{} {
    return nil
}

func (*emptyCtx) Err() error {
    return nil
}

func (*emptyCtx) Value(key interface{}) interface{} {
    return nil
}

func (e *emptyCtx) String() string {
    switch e {
    case background:
        return "context.Background"
    case todo:
        return "context.TODO"
    }
    return "unknown empty Context"
}

var (
    background = new(emptyCtx)
    todo       = new(emptyCtx)
)
func Background() Context {
    return background
}
func TODO() Context {
    return todo
}

但我们一般不会直接使用emptyCtx,而是使用由emptyCtx实例化的两个变量,分别可以通过调用BackgroundTODO方法得到

在这里插入图片描述
每次要在Context链路上增加要携带的键值对时,都要在上级Context的基础上新建一个 valueCtx 存储键值对,切只能增加不能修改,读取 Context 上的键值又是一个幂等的操作,所以 Context 就这样实现了线程安全的数据共享机制,且全程无锁,不会影响性能。

在这里插入图片描述
cancelCtx结构体

type cancelCtx struct {
    Context

    mu       sync.Mutex            // protects following fields
    done     chan struct{}         // created lazily, closed by first cancel call
    children map[canceler]struct{} // set to nil by the first cancel call
    err      error                 // set to non-nil by the first cancel call
}

type canceler interface {
    cancel(removeFromParent bool, err error)
    Done() <-chan struct{}
}
  • cancelCtx中也有一个context变量作为父节点
  • 变量done表示一个channel,用来表示传递关闭信号
  • children表示一个map,存储了当前context节点下的子节点
  • err用于存储错误信息表示任务结束的原因

valueCtx结构体

type valueCtx struct {
    Context
    key, val interface{}
}

func (c *valueCtx) Value(key interface{}) interface{} {
    if c.key == key {
        return c.val
    }
    return c.Context.Value(key)
}
  • valueCtx利用一个Context类型的变量来表示父节点context,所以当前context继承了父context的所有信息
  • valueCtx类型还携带一组键值对,也就是说这种context可以携带额外的信息
  • valueCtx实现了Value方法,用以在context链路上获取key对应的值,如果当前context上不存在需要的key,会沿着context链向上寻找key对应的值,直到根节点

timerCtx结构体

type timerCtx struct {
    cancelCtx
    timer *time.Timer // Under cancelCtx.mu.

    deadline time.Time
}

func (c *timerCtx) Deadline() (deadline time.Time, ok bool) {
    return c.deadline, true
}

func (c *timerCtx) cancel(removeFromParent bool, err error) {
    将内部的cancelCtx取消
    c.cancelCtx.cancel(false, err)
    if removeFromParent {
        // Remove this timerCtx from its parent cancelCtx's children.
        removeChild(c.cancelCtx.Context, c)
    }
    c.mu.Lock()
    if c.timer != nil {
        取消计时器
        c.timer.Stop()
        c.timer = nil
    }
    c.mu.Unlock()
}
  • timerCtx内部使用cancelCtx实现取消,另外使用定时器timer和过期时间deadline实现定时取消的功能。
  • timerCtx在调用cancel方法,会先将内部的cancelCtx取消,如果需要则将自己从cancelCtx祖先节点上移除,最后取消计时器。

除了Context 接口外还定义了一个叫做 canceler 的接口,实现了它的类型即为带取消功能的 Context。

  • emptyCtx 什么属性也没有,啥也不能干。
  • valueCtx 只能携带一个键值对,且依附在上一级 Context 上。
  • timerCtx 继承自 cancelCtx 他们都是带取消功能的 Context。

除了emptyCtx,其他类型的 Context 都依附在上级 Context 上

经过这个结构设计,如果要在整个任务链路上取消某个cancelCtx时,就能做到既取消自己,也把下级所有的cancelCtx都取消掉,同时还不会影响到上级和同级的其他节点。

在这里插入图片描述

我们让每个 goroutine 都携带了 Context ,那些做子任务的goroutine只要监听了这些子 cancelCtx 也就能收到信号,结束自己的运行,即通过Context 完成上级goroutine对下级 goroutine 的取消控制。

面对不同层级goroutine的取消条件不同的情况,代码里只需要监听传递到 goroutine 里的 Context 就能做到,免除了监听多个信号的繁琐

针对Context的使用建议,Go官方提到了下面几点:

  1. 不要将 Context 塞到结构体里。直接将 Context 类型作为函数的第一参数,而且一般都命名为 ctx。
  2. 不要向函数传入一个 nil 的 context,如果你实在不知道传什么,标准库的TODO方法给你准备好了一个 emptyCtx。
    • 一般在初始化:用BackgroundTODO(只是用于不同场景下):
      • Background通常被用于主函数、初始化以及测试中,作为一个顶层的context,也就是说一般我们创建的context都是基于Background
      • TODO是在不确定使用什么context的时候才会使用
  3. 不要把本应该作为函数参数的类型塞到 context 中,context 存储的应该是一些在 goroutine 共享的数据,比如Server的信息等等

context的使用

初始化:(首先就是要定义根节点)

Go内置两个函数:Background()和TODO(),这两个函数分别返回一个实现了Context接口的backgroundtodo

我们代码中最开始都是以这两个内置的上下文对象作为最顶层的partent context,衍生出更多的子上下文对象。

  • Background()主要用于main函数、初始化以及测试代码中,作为Context这个树结构的最顶层的Context,也就是根Context。
  • TODO(),它目前还不知道具体的使用场景,如果我们不知道该使用什么Context的时候,可以使用这个。

backgroundtodo本质上都是emptyCtx结构体类型,是一个不可取消,没有设置截止时间,没有携带任何值的Context。

with四系列

WithCancel

func WithCancel(parent Context) (ctx Context, cancel CancelFunc)

WithCancel返回带有新Done通道的父节点的副本。当调用返回的cancel函数或当关闭父上下文的Done通道时,将关闭返回上下文的Done通道,无论先发生什么情况。

取消此上下文将释放与其关联的资源,因此代码应该在此上下文中运行的操作完成后立即调用cancel。

func gen(ctx context.Context) <-chan int {
		dst := make(chan int)
		n := 1
		go func() {
			for {
				select {
				case <-ctx.Done():
					return // return结束该goroutine,防止泄露
				case dst <- n:
					n++
				}
			}
		}()
		return dst
	}
func main() {
	ctx, cancel := context.WithCancel(context.Background())
	defer cancel() // 当我们取完需要的整数后调用cancel

	for n := range gen(ctx) {
		fmt.Println(n)
		if n == 5 {
			break
		}
	}
}

代码解释:

gen函数在单独的goroutine中生成整数并将它们发送到返回的通道。 gen的调用者在使用生成的整数之后需要取消上下文,以免gen启动的内部goroutine发生泄漏。

WithDeadline

func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc)
  • 返回父上下文的副本,并将deadline调整为不迟于d(设置的时间)。
  • 如果父上下文的deadline已经早于d(设置的时间),则WithDeadline(parent, d)在语义上等同于父上下文。
  • 当截止日过期时,当调用返回的cancel函数时,或者当父上下文的Done通道关闭时,返回上下文的Done通道将被关闭,以最先发生的情况为准。

取消此上下文将释放与其关联的资源,因此代码应该在此上下文中运行的操作完成后立即调用cancel。

func main() {
	d := time.Now().Add(50 * time.Millisecond)
	ctx, cancel := context.WithDeadline(context.Background(), d)

	// 尽管ctx会过期,但在任何情况下调用它的cancel函数都是很好的实践。
	// 如果不这样做,可能会使上下文及其父类存活的时间超过必要的时间。
	defer cancel()

	select {
	case <-time.After(1 * time.Second):
		fmt.Println("overslept")
	case <-ctx.Done():
		fmt.Println(ctx.Err())
	}
}

代码解释

定义了一个50毫秒之后过期的deadline,然后我们调用context.WithDeadline(context.Background(), d)得到一个上下文(context)和一个取消函数(cancel),然后使用一个select让主程序陷入等待:等待1秒后打印overslept退出或者等待ctx过期后退出。

代码因为ctx 50毫秒后就会过期,所以ctx.Done()会先接收到context到期通知,并且会打印ctx.Err()的内容

WithTimeout

WithTimeout返回WithDeadline(parent, time.Now().Add(timeout))

func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc)

取消此上下文将释放与其相关的资源,因此代码应该在此上下文中运行的操作完成后立即调用cancel,通常用于数据库或者网络连接的超时控制

// context.WithTimeout

var wg sync.WaitGroup

func worker(ctx context.Context) {
LOOP:
	for {
		fmt.Println("db connecting ...")
		time.Sleep(time.Millisecond * 10) // 假设正常连接数据库耗时10毫秒
		select {
		case <-ctx.Done(): // 50毫秒后自动调用
			break LOOP
		default:
		}
	}
	fmt.Println("worker done!")
	wg.Done()
}

func main() {
	// 设置一个50毫秒的超时
	ctx, cancel := context.WithTimeout(context.Background(), time.Millisecond*50)
	wg.Add(1)
	go worker(ctx)
	time.Sleep(time.Second * 5)
	cancel() // 通知子goroutine结束
	wg.Wait()
	fmt.Println("over")
}

WithValue

WithValue 返回与 key 关联的值为 val 的 parent 副本

func WithValue(parent Context, key, val interface{}) Context

WithValue返回父节点的副本,其中与key关联的值为val。仅对API进程间传递请求域的数据使用上下文值,而不是使用它来传递可选参数给函数。

所提供的键必须是可比较的,并且不应该是string类型或任何其他内置类型,以避免使用上下文在包之间发生冲突。WithValue的用户应该为键定义自己的类型。为了避免在分配给interface{}时进行分配,上下文键通常具有具体类型struct{}。或者,导出的上下文关键变量的静态类型应该是指针或接口

// context.WithValue

type TraceCode string

var wg sync.WaitGroup

func worker(ctx context.Context) {
	key := TraceCode("TRACE_CODE")
	traceCode, ok := ctx.Value(key).(string) // 在子goroutine中获取trace code
	if !ok {
		fmt.Println("invalid trace code")
	}
LOOP:
	for {
		fmt.Printf("worker, trace code:%s\n", traceCode)
		time.Sleep(time.Millisecond * 10) // 假设正常连接数据库耗时10毫秒
		select {
		case <-ctx.Done(): // 50毫秒后自动调用
			break LOOP
		default:
		}
	}
	fmt.Println("worker done!")
	wg.Done()
}

func main() {
	// 设置一个50毫秒的超时
	ctx, cancel := context.WithTimeout(context.Background(), time.Millisecond*50)
	// 在系统的入口中设置trace code传递给后续启动的goroutine实现日志数据聚合
	ctx = context.WithValue(ctx, TraceCode("TRACE_CODE"), "12512312234")
	wg.Add(1)
	go worker(ctx)
	time.Sleep(time.Second * 5)
	cancel() // 通知子goroutine结束
	wg.Wait()
	fmt.Println("over")
}

最后在强调一下:

  • 推荐以参数的方式显示传递Context
  • 以Context作为参数的函数方法,应该把Context作为第一个参数。
  • 给一个函数方法传递Context的时候,不要传递nil,如果不知道传递什么,就使用context.TODO()
  • Context的Value相关方法应该传递请求域的必要数据,不应该用于传递可选参数
  • Context是线程安全的,可以放心的在多个goroutine中传递

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/151855.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu云服务器配置SFTP服务

目录 一、安装并运行SSH服务 1&#xff0c;安装ssh服务 2&#xff0c;运行ssh 3&#xff0c;查看ssh运行状态 二、创建SFTP用户并进行用户相关的配置 1&#xff0c;创建SFTP用户 2&#xff0c;限制用户只能使用 SFTP&#xff0c;并禁止 SSH 登录。打开/ect/ssh/sshd_conf…

解析:什么是生成式AI?与其他类型的AI有何不同?

原创 | 文 BFT机器人 快速浏览一下头条新闻&#xff0c;你会发现生成式AI似乎无处不在。事实上&#xff0c;一些新闻标题甚至可能是通过生成式AI编写的&#xff0c;例如OpenAI旗下的ChatGPT&#xff0c;这个聊天机器人已经展现出了生成看起来像人类所写文本的惊人能力。 当人们…

io+day8

#ifndef __SEM2 #define __SEM3 4 //声明一个创>5 int init_sem(6 7 //声明一个p操8 int P(int sem9 10 //声明一个v操11 int W(int sem12 13 //声明一个删>14 int del_sem(i15 16 #endif 1 #include <myhead.h> …

【博客系统】 二

本文主要介绍了linux和如何在云服务器上部署一个简单的servlet程序. 一.云服务器 真正搞一个网站,是希望这个网站被其他人访问到 , 所以需要一个云服务器(具有外网ip)来让别人也可以访问 云服务器 操作系统是Linux(一般都是通过命令行来操作) 当前市面上常见的系统: 1.windo…

IDEA写mybatis程序,java.io.IOException:Could not find resource mybatis-config.xml

找不到mybatis-config.xml 尝试maven idea:module&#xff0c;不是模块构造问题 尝试检验pom.xml&#xff0c;在编译模块添加了解析resources内容依旧不行 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.or…

魔众文库系统 v5.6.0 DWG文件格式支持,部分数据封面显示异常,定时调度清理临时文件

魔众文库系统基于文档系统知识&#xff0c;建立平台与领域&#xff0c;打造流量、用户、付费和变现的闭环&#xff0c;帮助您更好的搭建文库系统。 魔众文库系统发布v5.6.0版本&#xff0c;新功能和Bug修复累计17项&#xff0c;DWG文件格式支持&#xff0c;部分数据封面显示异…

P95陷阱

想象这个场景&#xff1a; 一位测试同事走到你的座位旁&#xff0c;说&#xff1a;“接到客户&#xff08;上游系统&#xff09;反馈&#xff0c;说我们系统有个Rest接口响应慢。我看了监控上的P95响应时间&#xff0c;都一秒多了&#xff0c;帮忙看看吧。” 又来活了。 你喜…

langchain 之 Tools 多案例使用(一)

原文&#xff1a;langchain 之 Tools 多案例使用&#xff08;一&#xff09; - 简书 ATTENTION: 如果采用 openai 的接口&#xff0c;需要走代理&#xff0c;本文采用 proxychains 进行设置。开启 debug 模式后&#xff0c;能看到更多的输出信息。 import langchain langcha…

ROC 曲线:健康背景下的应用和解释

一、介绍 在医疗保健领域&#xff0c;做出明智的决策对于改善患者治疗结果、有效分配资源和设计有效的诊断测试至关重要。受试者工作特征 (ROC) 曲线是一个强大的工具&#xff0c;在评估诊断测试的性能、区分健康个体和患病个体以及优化医疗保健干预方面发挥着至关重要的作用。…

第07章 面向对象编程(进阶)

一 关键字&#xff1a;this 1.1 this是什么&#xff1f; 在Java中&#xff0c;this关键字不算难理解&#xff0c;它的作用和其词义很接近。 它在方法&#xff08;准确的说是实例方法或非static的方法&#xff09;内部使用&#xff0c;表示调用该方法的对象。它在构造器内部使…

【android】install android NDK

目录 1 下载NDK 2 解压 3 android-ndk的配置 1 下载NDK 下载网址&#xff1a;NDK 下载 | Android NDK | Android Developers 如果没有所需要的版本&#xff0c;则点击页面下面 不受支持的 NDK 下载需要的版本。 2 解压 将压缩文件&#xff08;例如 android-ndk-r25c-…

(五)什么是Vite——冷启动时vite做了什么(依赖、预构建)

vite分享ppt&#xff0c;感兴趣的可以下载&#xff1a; ​​​​​​​Vite分享、原理介绍ppt 什么是vite系列目录&#xff1a; &#xff08;一&#xff09;什么是Vite——vite介绍与使用-CSDN博客 &#xff08;二&#xff09;什么是Vite——Vite 和 Webpack 区别&#xff0…

一看就会的jni,不会你来打我!

环境配置 Android Studio&#xff0c;这个不多说了。 简单说一下NDK的下载和环境变量&#xff0c;方便在Terminal里使用命令(mac版)。 下载 1.可以通过Android Studio内置的Settings-Android SDK-SDK Tools安装NDK&#xff0c;下载目录为 /Users/mac-xxx(Username)/Library…

VF01 bapi BAPI_BILLINGDOC_CREATEMULTIPLE修改付款方

系统标准通过函数SD_PARTNER_READ&#xff0c;读取VBPA表销售订单对应的伙伴。 调整通过源代码增强LV60AA01最后位置。

《QT从基础到进阶·二十九》QT,opencv源码调试

有时候我们在使用VS调试程序的bug&#xff0c;但发现程序崩溃的地方并不在我们写的程序中&#xff0c;我们通过调用堆栈发现程序崩溃的地方出现在QT或者opencv等源码中&#xff0c;那么我们怎么能把断点打到这些开源库中&#xff0c;下面提供一种办法&#xff1a; 解决方案–右…

单日充值破6000万、8天收入破亿,小程序短剧的商业真相

进入2023年以来&#xff0c;短剧发展的速度相当惊人。无论是从短视频平台的用户规模来说&#xff0c;还是从短剧内容的商业效益来看&#xff0c;都进入了双增长的狂飙模式。 小程序指的是在一些APP的小程序平台上&#xff08;多为微信端&#xff0c;抖音、快手等平台也有&…

使用requests库解决Session对象设置超时的问题

在requests库的IRC频道中&#xff0c;提出了一个问题&#xff0c;即Session对象在requests库中没有一个可以全局设置的timeout属性&#xff0c;而是需要为每个请求传递timeout值&#xff0c;或者创建一个自定义子类来实现。 为了解决这个问题&#xff0c;可以向Session对象添加…

Apache阿帕奇安装配置

目录 一、下载程序 1. 点击Download 2. 点击Files for Microsoft Windows 3. 点击Apache Lounge 4. 点击httpd-2.4.54-win64-VSI6.zip ​编辑​ 5. 下载压缩包 6.解压到文件夹里 二、配置环境变量 1. 右键我的电脑 - 属性 2. 高级系统设置 3. 点击环境变量 4. 点击系统…

中国芯片金字塔成形,商业化拐点将至

其作始也简&#xff0c;其将毕也钜。 传说埃及用时30年建成左赛尔金字塔&#xff0c;成为亘古不灭的世界奇迹。在今天&#xff0c;中国芯片产业走过8年“国产替代”历程&#xff0c;国产芯片的“金字塔”体系业已初具雏形&#xff0c;展现出蓬勃的发展潜力。 2023年是补全自主…

Linux系统进程与进程间通信

Linux是一个多用户、多任务的操作系统&#xff0c;支持多个进程同时运行。进程是Linux系统中的基本单元&#xff0c;它们负责执行各种任务&#xff0c;如网页浏览、文件下载、程序运行等。在Linux中&#xff0c;进程是由一个或多个线程组成的&#xff0c;线程是进程的基本执行单…