代码随想录算法训练营第五十五天丨 动态规划part16

583. 两个字符串的删除操作

思路

#动态规划一

本题和动态规划:115.不同的子序列 (opens new window)相比,其实就是两个字符串都可以删除了,情况虽说复杂一些,但整体思路是不变的。

这次是两个字符串可以相互删了,这种题目也知道用动态规划的思路来解,动规五部曲,分析如下:

  • 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

这里dp数组的定义有点点绕,大家要撸清思路。

  • 确定递推公式
  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。

  • dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

dp[0][j]的话同理,所以代码如下:

        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        for (int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;
        for (int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;
  • 确定遍历顺序

从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

  • 举例推导dp数组

以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:

583.两个字符串的删除操作1

以上分析完毕,代码如下:

// dp数组中存储需要删除的字符个数
class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        for (int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;
        for (int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;
        
        for (int i = 1; i < word1.length() + 1; i++) {
            for (int j = 1; j < word2.length() + 1; j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];
                }else{
                    dp[i][j] = Math.min(dp[i - 1][j - 1] + 2,
                                        Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
                }
            }
        }
        
        return dp[word1.length()][word2.length()];
    }
}
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

#动态规划二

本题和动态规划:1143.最长公共子序列 (opens new window)基本相同,只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。

代码如下:

class Solution {
    public int minDistance(String word1, String word2) {
        int len1 = word1.length();
        int len2 = word2.length();
        int[][] dp = new int[len1 + 1][len2 + 1];

        for (int i = 1; i <= word1.length(); i++) {
            for (int j = 1; j <= word2.length(); j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        int len = dp[len1][len2];
        return len1 + len2 - 2 * len;
    }
}
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

72. 编辑距离

思路

编辑距离终于来了,这道题目如果大家没有了解动态规划的话,会感觉超级复杂。

编辑距离是用动规来解决的经典题目,这道题目看上去好像很复杂,但用动规可以很巧妙的算出最少编辑距离。

接下来依然使用动规五部曲,对本题做一个详细的分析:

#1. 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

为啥要表示下标i-1为结尾的字符串呢,为啥不表示下标i为结尾的字符串呢?

为什么这么定义卡哥在 718. 最长重复子数组 (opens new window)中做了详细的讲解。

其实用i来表示也可以! 用i-1就是为了方便后面dp数组初始化的。

#2. 确定递推公式

在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

if (word1[i - 1] == word2[j - 1])
    不操作
if (word1[i - 1] != word2[j - 1])
    增
    删
    换

也就是如上4种情况。

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?

那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1] 与 word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1]就是 dp[i][j]了。

在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

  • 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。

即 dp[i][j] = dp[i - 1][j] + 1;

  • 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。

即 dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是删除元素,添加元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"word1删除元素'd' 和 word2添加一个元素'd',变成word1="a", word2="ad", 最终的操作数是一样! dp数组如下图所示意的:

            a                         a     d
   +-----+-----+             +-----+-----+-----+
   |  0  |  1  |             |  0  |  1  |  2  |
   +-----+-----+   ===>      +-----+-----+-----+
 a |  1  |  0  |           a |  1  |  0  |  1  |
   +-----+-----+             +-----+-----+-----+
 d |  2  |  1  |
   +-----+-----+

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

可以回顾一下,if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。

那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。

所以 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1];
}
else {
    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

#3. dp数组如何初始化

再回顾一下dp[i][j]的定义:

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

那么dp[i][0] 和 dp[0][j] 表示什么呢?

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

所以C++代码如下:

for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;

#4. 确定遍历顺序

从如下四个递推公式:

  • dp[i][j] = dp[i - 1][j - 1]
  • dp[i][j] = dp[i - 1][j - 1] + 1
  • dp[i][j] = dp[i][j - 1] + 1
  • dp[i][j] = dp[i - 1][j] + 1

可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:

72.编辑距离

所以在dp矩阵中一定是从左到右从上到下去遍历。

代码如下:

for (int i = 1; i <= word1.size(); i++) {
    for (int j = 1; j <= word2.size(); j++) {
        if (word1[i - 1] == word2[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1];
        }
        else {
            dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
        }
    }
}

#5. 举例推导dp数组

以示例1为例,输入:word1 = "horse", word2 = "ros"为例,dp矩阵状态图如下:

72.编辑距离1

以上动规五部分析完毕,代码如下:

class Solution {
    public int minDistance(String word1, String word2) {
        int len1 = word1.length();
        int len2 = word2.length();
        int[][] dp = new int[len1 + 1][len2 + 1];
        //初始化
        for (int i = 0; i <= len1; i++) dp[i][0]=i;
        for (int j = 0; j <= len2; j++) dp[0][j]=j;

        for (int i = 1; i <= len1; i++) {
            for (int j = 1; j <= len2; j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = Math.min(dp[i - 1][j], Math.min(dp[i][j - 1],dp[i-1][j-1]))+1;
                }
            }
        }
        return dp[len1][len2];
    }
}
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/151370.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

中国又一家手机企业赶超苹果,逼得苹果降价抢占3000元市场

今年第44周的数据显示&#xff0c;苹果再次失去了中国手机市场第一名&#xff0c;这对于苹果希望iPhone15热销带动销量的目标受挫&#xff0c;难怪苹果在双十一竭尽全力降价抢占市场了。 苹果的iPhone15上市确实带动了一波销售&#xff0c;不过仅仅维持了两周&#xff0c;随后1…

“具有分布式能源资源的多个智能家庭的能源管理的联邦强化学习”文章学习二

一、准备工作 本篇文章所使用的缩写总结如下表。 Markov决策过程&#xff08;MDP&#xff09;被定义为元组&#xff08;S&#xff0c;A&#xff0c;P&#xff0c;R&#xff0c;T&#xff09;&#xff0c;其中S和A是有限的有效状态集和所有有效动作的有限集。函数P : SA→ P(S)是…

Java排序算法之归并排序

图解 归并排序是一种效率比较高的分治排序算法&#xff0c;主要分为两个步骤&#xff0c;分别为“分”和“并”。 分&#xff1a;将序列不断二分&#xff0c;直到每个子序列只有一个元素为止。 并&#xff1a;将相邻两个子序列进行合并&#xff0c;合并时比较两个子序列的元素…

BUUCTF 被劫持的神秘礼物 1

BUUCTF:https://buuoj.cn/challenges 题目描述&#xff1a; 某天小明收到了一件很特别的礼物&#xff0c;有奇怪的后缀&#xff0c;奇怪的名字和格式。小明找到了知心姐姐度娘&#xff0c;度娘好像知道这是啥&#xff0c;但是度娘也不知道里面是啥。。。你帮帮小明&#xff1…

工作中积累的对K8s的就绪和存活探针的一些认识

首先&#xff0c;我的项目是基于 Spring Boot 2.3.5 的&#xff0c;并依赖 spring-boot-starter-actuator 提供的 endpoints 来实现就绪和存活探针&#xff0c;POM 文件如下图&#xff1a; 下面&#xff0c;再让我们来看下与该项目对应的Deployment的YAML文件&#xff0c;如下…

2023最新最全【虚幻4引擎】下载安装零基础教程

1、创建Epic Games账户 我们先打开浏览器&#xff0c;输入以下网址&#xff1a;unrealengine.com 随后点击【立即开始】 选择许可证类型&#xff0c;此处提供三种选项&#xff0c;分别是【游戏】、【非游戏】以及【私人定制】 第一类许可证适用于游戏和商业互动产品&#xff…

Java代码实现贪吃蛇游戏

一、创建新项目 创建一个新的项目&#xff0c;并命名。创建一个名为images的文件夹用来存放游戏相关图片。然后再在项目的src文件下创建一个com.xxx.view的包用来存放所有的图形界面类&#xff0c;创建一个com.xxx.controller的包用来存放启动的入口类(控制类)。如下所示&…

msvcp140.dll文件的丢失原因以及五个解决办法

在计算机使用过程中&#xff0c;我们常常会遇到一些错误提示&#xff0c;其中之一就是“msvcp140.dll丢失”。这个错误通常会导致某些应用程序无法正常运行。为了解决这个问题&#xff0c;我们需要采取一些措施来修复丢失的msvcp140.dll文件。本文将介绍五个处理办法&#xff0…

【C++】深拷贝与浅拷贝

1、深拷贝与浅拷贝 当我们对复杂类型(结构体或者类)的对象进行初始化时&#xff0c;如果将同类型的对象A赋值给同类型的对象B&#xff0c;此时就涉及深拷贝和浅拷贝的问题。 浅拷贝&#xff1a;简单的赋值拷贝操作。把类/结构体的对象的属性原封不动的赋值给另一个同类型的对…

这可能测试全网最详细的Pytest教程

前言 关于自动化测试&#xff0c;这些年经历了太多的坑&#xff0c;有被动的坑&#xff0c;也有自己主动挖的坑&#xff0c;在这里做了一些总结。 主要思考总结下这些年来自动化测试过程中的一些基本的东西&#xff0c;例如何时进行自动化、如何自动化、或是怎么自动化我们的…

论文绘图-机器学习100张模型图

在现代学术研究和技术展示中&#xff0c;高质量的图表和模型结构图是至关重要的。这尤其在机器学习领域更为显著&#xff0c;一个领域以其复杂的算法和复杂的数据结构而闻名。机器学习是一种使用统计技术使计算机系统能够从数据中学习和改进其任务执行的方法&#xff0c;而有效…

cmake简单使用

简介 理论上&#xff0c;任意一个C程序都可以用g来编译。 但当程序规模越来越大时&#xff0c;一个工程可能有许多个文件夹和源文件&#xff0c;这时输入的编译命令将越来越长。通常&#xff0c;一个小型C项目可能含有十几个类&#xff0c;各类间还存在着复杂的依赖关系。其中…

Python数据容器通用操作

通用操作 1.数据容器可以从以下视角进行简单的分类2.数据容器特点对比3.数据容器的通用操作4.功能总览5.字符串大小比较 1.数据容器可以从以下视角进行简单的分类 是否支持下标索引 支持&#xff1a;列表、元组、字符串 --序列类型不支持&#xff1a;集合、字典 --非序列类型 …

【C++干货铺】解密vector底层逻辑

个人主页点击直达&#xff1a;小白不是程序媛 C系列专栏&#xff1a;C干货铺 代码仓库&#xff1a;Gitee 目录 vector介绍 vector的使用 vector的定义和使用 vector的空间增长问题 vector的增删查改 解密vector及模拟实现 成员变量 成员函数 构造函数 拷贝构造函数…

分类预测 | Matlab实现PSO-LSTM-Attention粒子群算法优化长短期记忆神经网络融合注意力机制多特征分类预测

分类预测 | Matlab实现PSO-LSTM-Attention粒子群算法优化长短期记忆神经网络融合注意力机制多特征分类预测 目录 分类预测 | Matlab实现PSO-LSTM-Attention粒子群算法优化长短期记忆神经网络融合注意力机制多特征分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1…

飞书开发学习笔记(七)-添加机器人及发送webhook消息

飞书开发学习笔记(七)-添加机器人及发送webhook消息 一.添加飞书机器人 1.1 添加飞书机器人过程 在群的右上角点击折叠按键…选择 设置 群机器人中选择 添加机器人 选择自定义机器人&#xff0c;通过webhook发送消息 弹出的信息中有webhook地址&#xff0c;选择复制。 安…

【Linux专题】SFTP 用户配置 ChrootDirectory

【赠送】IT技术视频教程&#xff0c;白拿不谢&#xff01;思科、华为、红帽、数据库、云计算等等https://xmws-it.blog.csdn.net/article/details/117297837?spm1001.2014.3001.5502 红帽认证 认证课程介绍&#xff1a;红帽RHCE9.0学什么内容&#xff0c;新版有什么变化-CSDN…

任正非说:10%的特殊场景就像牛在路上,谁也不知道它会在哪拉屎

你好&#xff01;这是华研荟【任正非说】系列的第40篇文章&#xff0c;让我们聆听任正非先生的真知灼见&#xff0c;学习华为的管理思想和管理理念。 一、我们要建立核心生产能力&#xff0c;否则我们对供应链理解不深&#xff0c;供应链不能打通。我们之所以管道系统做得好&am…

修改树莓派4b密码

修改树莓派4b密码&#xff0c;vnc viewer远程连接树莓派时忘记了密码&#xff0c;修改为新密码进行远程连接 sudo passwd pi 其中pi为所要修改密码的用户

Java 设计模式——中介者模式

目录 1.概述2.结构3.案例实现3.1.抽象中介类3.2.抽象同事类3.3.具体同事类3.4.具体中介类3.5.测试 4.优缺点5.使用场景 1.概述 &#xff08;1&#xff09;一般来说&#xff0c;同事类之间的关系是比较复杂的&#xff0c;多个同事类之间互相关联时&#xff0c;他们之间的关系会…