基于平衡优化器算法优化概率神经网络PNN的分类预测 - 附代码

基于平衡优化器算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于平衡优化器算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于平衡优化器优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用平衡优化器算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于平衡优化器优化的PNN网络

平衡优化器算法原理请参考:https://blog.csdn.net/u011835903/article/details/111388552

利用平衡优化器算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

平衡优化器参数设置如下:

%% 平衡优化器参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,平衡优化器-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/151036.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux 系统编程,Binder 学习,文件访问相关的接口

文章目录 Linux 系统编程,Binder 学习,文件访问相关的接口1.概念2.linux文件结构3.文件描述符4.Linux文件系统的两类常用接口,linux系统内置库函数4.1 open4.2 close4.3 read4.4 write 5.标准I/O库函数5.1 fopen Linux 系统编程,B…

IDEA 高分辨率卡顿优化

VM设置优化 -Dsun.java2d.uiScale.enabledfalse 增加该条设置,关闭高分切换 https://intellij-support.jetbrains.com/hc/en-us/articles/115001260010-Troubleshooting-IDE-scaling-DPI-issues-on-Windows​intellij-support.jetbrains.com/hc/en-us/articles/1…

c语言判断链表是否为循环链表

普通链表与循环链表的区别在于:普通链表的最后一个节点指向为NULL,而循环链表最后一个节点指向该链表中的任意一个节点,如同一个环。循环链表问题引出了一个在链表中很重要的概念:快、慢指针。快、慢指针可以帮助我们解决很多经典…

使用jmeter+ant进行接口自动化测试(数据驱动)

本次接着介绍如何利用apache-ant执行测试用例并生成HTML格式测试报告 ①下载安装 apache-ant-1.9.9,配置环境变量 如下方式检验安装成功 ②安装好ant后,把jmeter中extras目录下的ant-jmeter-1.1.1.jar 文件copy到ant安装目录下的lib文件夹中 ③配置ant…

ssm045基于jsp的精品酒销售管理系统+jsp

ssm045基于jsp的精品酒销售管理系统jsp 交流学习: 更多项目: 全网最全的Java成品项目列表 https://docs.qq.com/doc/DUXdsVlhIdVlsemdX 演示 项目功能演示: ————————————————

247:vue+openlayers 根据坐标显示多边形(3857投影),计算出最大幅宽

第247个 点击查看专栏目录 本示例是演示如何在vue+openlayers项目中根据坐标显示多边形(3857投影),计算出最大幅宽。这里先通过Polygon来显示出多边形,利用getExtent() 获取3857坐标下的最大最小x,y值,通过ransformExtent转换坐标为4326, 通过turf的turf.distance和计算…

Vue3清除Echarts图表

一:前言 Vue3是一款流行的JavaScript框架。它提供了丰富的工具和组件,使得开发者可以轻松构建交互式的Web应用程序。而Echarts是一款功能强大的图表库,它可以帮助开发者以直观的方式展示数据。 在使用Vue3和E charts的过程中&#xf…

【数电】IEEE754浮点数

IEEE754浮点数 1.组成及分类2.计算(1)符号位(2)阶码(3)尾码(4)实际计算公式 1.组成及分类 (1)组成 IEEE754浮点数由三部分组成:符号位、阶码和尾码。 (2)分类 根据数据位宽分为三类:短浮点数、长浮点数和…

【ArcGIS处理】行政区划与流域区划间转化

【ArcGIS处理】行政区划与流域区划间转化 引言数据准备1、行政区划数据2、流域区划数据 ArcGIS详细处理步骤Step1:统计行政区划下子流域面积1、创建批量处理模型2、添加批量裁剪处理3、添加计算面积 Step2:根据子流域面积占比均化得到各行政区固定值 参考…

双点重发布路由策略实验

任务&IP分配如下: 双点重发布实验 第一步:配置IP地址&环回地址 以R1为例,R2、R3、R4同理 interface GigabitEthernet 0/0/0 ip address 12.0.0.1 24 interface GigabitEthernet 0/0/1 ip address 13.0.0.1 24 interface LookBack …

AdaBoost 算法:理解、实现和掌握 AdaBoost

一、介绍 Boosting 是一种集成建模技术,由 Freund 和 Schapire 于 1997 年首次提出。从那时起,Boosting 就成为解决二元分类问题的流行技术。这些算法通过将大量弱学习器转换为强学习器来提高预测能力 。 Boosting 算法背后的原理是,我们首先…

ruoyi若依前端请求接口超时,增加响应时长

问题: 前端查询请求超时 解决: 找到request.js的timeout属性由10秒改成了20秒,因为默认是10秒,请求肯定是超出了10秒 祝您万事顺心,没事点个赞呗,关注一下也行啊,有啥要求您评论哈

北大腾讯打造多模态15边形战士!语言作“纽带”,拳打脚踢各模态,超越Imagebind

AI4Happiness 投稿 量子位 | 公众号 QbitAI 北大联合腾讯打造了一个多模态15边形战士! 以语言为中心,“拳打脚踢”视频、音频、深度、红外理解等各模态。 具体来说,研究人员提出了一个叫做LanguageBind的多模态预训练框架。 用语言作为与其…

Python中的时间序列分析模型ARIMA

大家好,时间序列分析广泛用于预测和预报时间序列中的未来数据点。ARIMA模型被广泛用于时间序列预测,并被认为是最流行的方法之一。本文我们将学习如何在Python中搭建和评估用于时间序列预测的ARIMA模型。 ARIMA模型 ARIMA模型是一种用于分析和预测时间…

华为ensp防火墙虚拟系统在网络中的部署

首先我们要知道虚拟系统是啥,干什么用的,解决什么问题的,说白话就是,我没钱,买不起两台墙,我买一台墙通过虚拟系统的方式逻辑变成两台墙,学过高级路由的都知道vpn,vpn是将路由器器逻…

Spring6(六):提前编译AOT

文章目录 提前编译:AOT1. AOT概述1.1 JIT与AOT的区别1.2 Graalvm1.3 Native Image 2. 演示Native Image构建过程2.1 GraalVM安装(1)下载GraalVM(2)配置环境变量(3)安装native-image插件 2.2 安装…

内存泄漏、new、delete

1. 内存泄漏 内存泄漏&#xff1a;指针被销毁&#xff0c;指针指向的空间依旧存在 2. new过程 与内存分配、构造函数有关 1&#xff09;分配空间&#xff1a;void* mem operator new( sizeof( ) )&#xff0c;内部调用malloc 2&#xff09;static_cast<目标类型>(mem) …

uniapp 实现微信小程序手机号一键登录

app 和 h5 手机号一键登录&#xff0c;参考文档&#xff1a;uni-app官网 以下是uniapp 实现微信小程序手机号一键登录 1、布局 <template><view class"mainContent"><image class"closeImg" click"onCloseClick"src"quic…

2023年【安全员-C证】考试题库及安全员-C证考试总结

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 安全员-C证考试题库根据新安全员-C证考试大纲要求&#xff0c;安全生产模拟考试一点通将安全员-C证模拟考试试题进行汇编&#xff0c;组成一套安全员-C证全真模拟考试试题&#xff0c;学员可通过安全员-C证考试总结全…

Pytorch数据集读出到transform全过程

最近写代码又遇见了这个问题&#xff0c;又忘记了&#xff0c;于是写一篇博客记录一下。 一般我们使用pytorch获取CIFAR10数据集&#xff0c;一般这样写&#xff1a; mean [0.4914, 0.4822, 0.4465] std [0.2023, 0.1994, 0.2010] transform transforms.Compose([transform…