python科研绘图:P-P图与Q-Q图

目录

什么是P-P图与Q-Q图

分位数

百分位数

Q-Q图步骤与原理

Shapiro-Wilk检验

绘制Q-Q图

绘制P-P图


什么是P-P图与Q-Q图

P-P图和Q-Q图都是用于检验样本的概率分布是否服从某种理论分布。

P-P图的原理是检验实际累积概率分布与理论累积概率分布是否吻合。若吻合,则散点应围绕在一条直线周围,或者实际累积概率与理论累积概率之差分布在对称于以0为水平轴的带内。

Q-Q图的原理是检验实际分位数与理论分位数是否吻合。若吻合,则散点应围绕在一条直线周围,或者实际分位数与理论分位数之差分布在对称于以0为水平轴的带内。

P-P图和Q-Q图都是用于检验样本的概率分布是否服从某种理论分布。当检验样本的分布为正态分布时,Q-Q图中直线斜率为待检测数据的标准差,截距为均值。

特点P-P图Q-Q图
用途评估累积概率分布函数(CDF)的拟合程度。评估样本分布与理论分布的拟合程度。
横坐标标准化的观测值(累积概率)理论分布的分位数
纵坐标样本观测值的累积概率理论分布的分位数
判定标准直观看出CDF的拟合情况,直线越接近对角线越好。点在45度对角线上越接近,拟合越好。
形状分析对于偏斜、尖峰等分布形状的评估较为直观。主要用于检验是否符合正态分布,对称性等。
数据量要求对数据量要求不敏感,适用于各种分布的评估。在小样本下效果较好,对数据量要求较高。

分位数

分位数, 指的就是连续分布函数中的一个点,这个点对应概率p。若概率0<p<1,随机变量X或它的概率分布的分位数Za,是指满足条件p(X≤Za)=α的实数。

百分位数

百分位数,统计学术语,如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数。可表示为:一组n个观测值按数值大小排列。如,处于p%位置的值称第p百分位数。

Q-Q图步骤与原理

1)将数据升序排列,根据各点在该组数据中的位置,算出累积概率,计算累积概率时(若共n个数),第i个数的累积概率不是i/n,而是用(i-0.5)/n。这可能是为了避免最后一个数的累积概率为1时,反算出的积分上限为正无穷。;

2)根据累积概率,反算出若为标准正态分布,高斯函数的积分上限;

3)积分上限为横坐标,数据点为纵坐标,画出数据分布的QQ图;

4)根据数据的均值与标准差,画出若该组数据为正态分布的QQ图。

P-P图与Q-Q图类似,把分位数换成累积概率。

Shapiro-Wilk检验

Shapiro-Wilk检验是一种用于检验样本数据是否来自正态分布的统计方法。该检验是由Samuel Shapiro和Martin Wilk于1965年提出的。它基于一个假设,即如果样本数据来自正态分布,那么样本数据的顺序统计量应该与对应的理论累积分布函数之间存在线性关系。

Shapiro-Wilk检验的零假设是数据来自正态分布。如果检验结果的p值小于所选定的alpha级别,那么否定假设被拒绝,意味着样本数据不是来自正态分布。反之,如果p值大于选定的alpha级别,则不能拒绝零假设,即数据可能来自正态分布。

绘制Q-Q图

import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
​
plt.rcParams['font.sans-serif'] = ['SimHei']  # 防止中文标签乱码
plt.rcParams['axes.unicode_minus'] = False
​
# 生成一个示例数据集,这里使用随机数据
np.random.seed(0)
data = np.random.normal(loc=50, scale=5, size=40)  # 均值=50,标准差=5
# 正态性检验 - Shapiro-Wilk检验,
# Shapiro-Wilk检验基于W统计量,对数据是否符合正态分布进行评估,适用于各种样本大小
stat, p = stats.shapiro(data)
print("Shapiro-Wilk正态性检验统计量:", stat)
print("Shapiro-Wilk正态性检验p值:", p)
plt.figure(figsize=(6, 6))
# 绘制概率图(probability plot)
# stats.probplot函数通过最小二乘法来估计一组数据的分位数对,并利用线性回归技术求出分位数图上的理论值与实际值的直线方程。
stats.probplot(data, plot=plt, dist='norm', fit=True, rvalue=True)
plt.title('Probability Plot (Q-Q Plot)')
plt.legend()
plt.grid(True)
plt.tight_layout()
# 显示图形
plt.show()

Shapiro-Wilk正态性检验统计量: 0.9782676696777344

Shapiro-Wilk正态性检验p值: 0.6254295110702515

绘制P-P图

import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
​
plt.rcParams['font.sans-serif'] = ['SimHei']  # 防止中文标签乱码
plt.rcParams['axes.unicode_minus'] = False
​
# 生成一个示例数据集,这里使用随机数据
np.random.seed(0)
data = np.random.normal(loc=50, scale=5, size=40)  # 均值=50,标准差=5
# 正态性检验 - Shapiro-Wilk检验,
# Shapiro-Wilk检验基于W统计量,对数据是否符合正态分布进行评估,适用于各种样本大小
stat, p = stats.shapiro(data)
print("Shapiro-Wilk正态性检验统计量:", stat)
print("Shapiro-Wilk正态性检验p值:", p)
plt.figure(figsize=(6, 6))
# Create a P-P plot
stats.probplot(data, plot=plt)
​
# Customize the plot if needed
plt.title('P-P Plot')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
​
# Show the plot
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/150884.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HPC 工作负载管理 —— IBM Spectrum LSF Suite

全面的工作负载管理解决方案&#xff0c;通过增强用户和管理员体验以及实现规模性能来简化 HPC。 IBM Spectrum LSF Suites 是面向分布式高性能计算 (HPC) 的工作负载管理平台和作业调度程序。基于 Terraform 的自动化现已可用&#xff0c;该功能可在 IBM Cloud 上为基于 IBM …

c语言:解决数组元素右旋问题,时间复杂度O(N)

题目&#xff1a; 给一个数组&#xff0c;如【1&#xff0c;2&#xff0c;3&#xff0c;4&#xff0c;5&#xff0c;6&#xff0c;7】,k3。 要求得到新数组【5&#xff0c;6&#xff0c;7&#xff0c;1&#xff0c;2&#xff0c;3&#xff0c;4】。 方法一&#xff0c;思路和…

GPT模型支持下的Python-GEE遥感云大数据分析、管理与可视化技术及多领域案例实践应用

随着航空、航天、近地空间等多个遥感平台的不断发展&#xff0c;近年来遥感技术突飞猛进。由此&#xff0c;遥感数据的空间、时间、光谱分辨率不断提高&#xff0c;数据量也大幅增长&#xff0c;使其越来越具有大数据特征。对于相关研究而言&#xff0c;遥感大数据的出现为其提…

EtherCAT从站EEPROM组成信息详解(2):字8-15产品标识区

0 工具准备 1.EtherCAT从站EEPROM数据&#xff08;本文使用DE3E-556步进电机驱动器&#xff09;1 字8-字15产品标识区 1.1 产品标识区组成规范 对于不同厂家和型号的从站&#xff0c;主站是如何区分它们的呢&#xff1f;这就要提起SII的字8-字15区域存储的产品标识&#xff…

计算机视觉:人脸识别与检测

目录 前言 识别检测方法 本文方法 项目解析 完整代码及效果展示 前言 人脸识别作为一种生物特征识别技术&#xff0c;具有非侵扰性、非接触性、友好性和便捷性等优点。人脸识别通用的流程主要包括人脸检测、人脸裁剪、人脸校正、特征提取和人脸识别。人脸检测是从获取的图…

电磁场与电磁波part1--矢量分析

目录 1、方向导数 2、散度定理&#xff08;高斯定理&#xff09; 3、散度与旋度的比较 4、旋度定理&#xff08;斯托克斯定理&#xff09; 5、关于点乘、叉乘、梯度、散度、旋度的计算 ~~~~~~~~~~~~~~~~~~~~~~~~ 确认过眼神&#xff0c;是我看不懂的 ~~~~~~~~~~~~~~~~…

5. HTML中常用标签

5. html常用标签 5.1 标签语义 学习标签是有技巧的&#xff0c;重点是记住每个标签的语义。简单理解就是指标签的含义。即这个标签是用来干嘛的。 根据标签的语义&#xff0c;在合适的地方给一个最为合理的标签。可以让页面结构给清晰。 5.2 标题标签 <h1>-<h6>…

【C++ std::max_element std::min_element std::minmax_element】

一 、std::max_element 寻找范围 [first, last) 中的最大元素。 (1) 用 operator< 比较元素。 (3) 用给定的二元比较函数 comp 比较元素。 (2),(4) 同 (1,3) &#xff0c;但按照 policy 执行。这些重载仅若 std::is_execution_policy_v<std::decay_t > (C20 前)std:…

【C++】泛型编程 ④ ( 函数模板 与 普通函数 调用规则 | 类型自动转换 | 类型自动转换 + 显式指定泛型类型 )

文章目录 一、普通函数 与 函数模板 的调用规则 - 类型自动转换1、函数模板和重载函数2、类型自动转换3、代码示例 - 类型自动转换 二、普通函数 与 函数模板 的调用规则 - 类型自动转换 显式指定泛型类型1、类型自动转换 显式指定泛型类型2、代码示例 - 类型自动转换 显式指…

string的简单操作

目录 string的接口说明 构造 constructor operator 迭代器操作 begin( )和end( ) rbegin( ) 和 rend( ) 范围for和迭代器的关系 范围for 迭代器 容量 size lengtn max_size resize capacity reserve clear empty string类的元素访问 operator[ ] at fro…

构造函数和初始化列表的关系和区别【详解】

构造函数和初始化列表关系和区别&#xff0c;以及为什么有初始化列表&#xff0c;和它的好处 一、构造函数和初始化列表的关系和区别二、为什么有初始化列表三、使用初始化列表的好处 一、构造函数和初始化列表的关系和区别 百度百科这样定义初始化列表&#xff1a;与其他函数…

基于STM32的LoRaWAN无线通信网络设计与实现

LoRaWAN (Long Range Wide Area Network) 是一种低功耗的无线通信技术&#xff0c;用于构建广域物联网。本篇文章将介绍基于STM32微控制器的LoRaWAN无线通信网络的设计与实现&#xff0c;并提供相应的代码示例。 概述 LoRaWAN的无线通信技术采用低功耗长距离传输&#xff0c;…

STM32 独立看门狗

目录 1.独立看门狗介绍 2.独立看门狗本质 3.独立看门狗框图​编辑 4.独立看门狗时钟 5.预分频寄存器&#xff08;IWDG_PR)​编辑 6.重装载寄存器&#xff08;IWDG_RLR) 7.键寄存器&#xff08;IWDG_KR) 8.独立看门狗实验和代码示例 9.独立看门狗和窗口看门狗的异同点 …

【原创】java+swing+mysql个人日记管理系统设计与实现

摘要&#xff1a; 个人日记管理系统是一个可以记录、管理、存储和检索个人日记的应用程序。这个系统允许用户创建和管理多个日记帐户&#xff0c;每个帐户都可以有多个日记条目。用户可以随时添加、编辑或删除日记条目&#xff0c;并可以将这些条目按照主题或其他标准进行分类…

python科研绘图:绘制X-bar图

目录 1.X-bar 图的基本概念 2.X-bar 图的绘制过程 3.X-bar 图的优势 4.X-bar 图的绘制 1.X-bar 图的基本概念 X-bar控制图是一种统计工具&#xff0c;用于监控和控制生产过程中的质量变量。它是过程能力分析和统计过程控制&#xff08;SPC&#xff0c;Statistical Process…

React 高级教程

目录 前言setState函数式编程HooksMy HooksuseState定义原理函数式更新reduce 方法react 源码 useEffect定义原理无限循环 useCallback定义原理 useMemo定义比较 ReduxuseReducer定义使用应用 useContext 前言 在现代前端开发中&#xff0c;React已经成为了一种无法忽视的技术…

Java —— 多态

目录 1. 多态的概念 2. 多态实现条件 3. 重写 重写与重载的区别 4. 向上转型和向下转型 4.1 向上转型 4.2 向下转型 5. 多态的优缺点 6. 避免在构造方法中调用重写的方法 我们从字面上看"多态"两个字, 多态就是有多种状态/形态. 比如一个人可以有多种状态, …

基于STM32的无线通信系统设计与实现

【引言】 随着物联网的迅速发展&#xff0c;无线通信技术逐渐成为现代通信领域的关键技术之一。STM32作为一款广受欢迎的微控制器&#xff0c;具有丰富的外设资源和强大的计算能力&#xff0c;在无线通信系统设计中具有广泛的应用。本文将介绍如何基于STM32实现一个简单的无线通…

Go ZIP压缩文件读写操作

创建zip文件 golang提供了archive/zip包来处理zip压缩文件&#xff0c;下面通过一个简单的示例来展示golang如何创建zip压缩文件&#xff1a; func createZip(filename string) {// 缓存压缩文件内容buf : new(bytes.Buffer)// 创建zipwriter : zip.NewWriter(buf)defer writ…

Oracle OCP / MySQL OCP认证容易通过吗

诸多学员在首次考OCP时&#xff0c;不清楚要如何选择。在本文中&#xff0c;我会为大家进行讲解&#xff01; 选择OCP认证时需要考虑的几大项目&#xff1a; 授课老师师资经验 课程大纲 试听课程 考试通过率 业界口碑 服务质量 郭一军老师的OCP培训在业界培训的学员中已…