GPT模型支持下的Python-GEE遥感云大数据分析、管理与可视化技术及多领域案例实践应用

随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提供了前所未有的机遇,但同时也提出了巨大的挑战。传统的工作站和服务器已经无法满足大区域、多尺度海量遥感数据处理的需要。

点击查看原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247534335&idx=6&sn=dcef05f92fdb72c62d676d4abe19fb2e&chksm=ce64ac14f9132502edc10433e37180e0c23e61402a4cf59a0aeee8c23a99c17e60ca1d7d1bd0&scene=21#wechat_redirect

为解决这一问题,国内外涌现了许多全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台如谷歌Earth Engine(GEE)、航天宏图的PIE Engine和阿里的AI Earth等。其中,Earth Engine最为强大,能够存取和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星图像和NCEP等气象再分析数据集,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。目前,Earth Engine上包含超过900个公共数据集,每月新增约2 PB数据,总容量超过80PB。与传统的处理影像工具(例如ENVI)相比,Earth Engine在处理海量遥感数据方面具有不可比拟的优势。一方面,它提供了丰富的计算资源;另一方面,其巨大的云存储能力节省了科研人员大量的数据下载和预处理时间。可以说,Earth Engine在遥感数据的计算和分析可视化方面代表世界该领域最前沿水平,是遥感领域的一次革命。

如今,Earth Engine凭借其强大的功能正受到越来越多国内外科技工作者的关注,应用范围也在不断扩大。本课程致力于帮助科研工作者掌握Earth Engine的实际应用能力,以Python编程语言为基础,结合实例讲解平台搭建、影像数据分析、经典应用案例、本地与云端数据管理,以及云端数据论文出版级可视化等方面的进阶技能。为了提高教学质量,将融合最先进的ChatGPT、文心一言等AI自然语言模型辅助教学,协助学员解答疑惑、提供针对性建议和指导,不仅让学员更深入地掌握课程内容,还为今后自助学习提供高效的个性化的学习体验。目前,Earth Engine以其强大的功能受到国内外越来越多的科技工作者的重视,应用也越来越普遍。旨在帮助科研工作者掌握Earth Engine的实际应用能力,将以Python编程语言为基础,结合案例从平台搭建、影像数据分析、本地和云端数据管理,以及云端数据论文出版级可视化等方面进行讲解和进阶训练。此外,本课程还将强调批处理和机器学习,适合已掌握一定Earth Engine和Python基础、或对编程有浓厚兴趣的学员。

第一章、理论基础

1、Earth Engine平台及应用、主要数据资源介绍

2、Earth Engine遥感云重要概念、数据类型与对象等

3、JavaScript与Python遥感云编程比较与选择

4、Python基础(语法、数据类型与程序控制结构、函数及类与对象等)

5、常用Python软件包((pandas、numpy、os等)介绍及基本功能演示(Excel/csv数据文件读取与数据处理、目录操作等)

6、JavaScript和Python遥感云API差异,学习方法及资源推荐

7、ChatGPT、文心一言等AI自然语言模型介绍及其遥感领域中的应用

第二章、开发环境搭建

1、本地端与云端Python遥感云开发环境介绍

2、本地端开发环境搭建

1)Anaconda安装,pip/conda软件包安装方法和虚拟环境创建等;

2)earthengine-api、geemap等必备软件包安装;

3)遥感云本地端授权管理;

4)Jupyter Notebook/Visual Studio Code安装及运行调试。 

3、云端Colab开发环境搭建

4、geemap介绍及常用功能演示

5、ChatGPT、文心一言帐号申请与主要功能演示,如遥感知识解答、数据分析处理代码生成、方案框架咨询等。

第三章、遥感大数据处理基础与ChatGPT等AI模型交互

1、遥感云平台影像数据分析处理流程介绍:介绍遥感云平台影像数据分析处理流程的基本框架,包括数据获取、数据预处理、算法开发、可视化等。

2、要素和影像等对象显示和属性字段探索:介绍如何在遥感云平台上显示和探索要素和影像等对象的属性字段,包括如何选择要素和影像对象、查看属性信息、筛选数据等。

3、影像/要素集的时间、空间和属性过滤方法:介绍如何对影像/要素集进行时间、空间和属性过滤,包括如何选择时间段、地理区域和属性条件,以实现更精确的数据分析。

4、波段运算、条件运算、植被指数计算、裁剪和镶嵌等:介绍如何在遥感云平台上进行波段运算、条件运算、植被指数计算、裁剪和镶嵌等操作,以实现更深入的数据分析。

5、Landsat/Sentinel-2等常用光学影像去云:介绍如何在遥感云平台上使用不同方法去除Landsat/Sentinel-2等常用光学影像中的云,以提高影像数据质量。

6、影像与要素集的迭代循环:介绍如何使用遥感云平台的迭代循环功能对影像和要素集进行批量处理,以提高数据分析效率。

7、影像数据整合(Reducer):介绍如何使用遥感云平台的Reducer功能将多个影像数据整合成一个数据集,以方便后续数据分析。

8、邻域分析与空间统计:介绍如何在遥感云平台上进行邻域分析和空间统计,以获取更深入的空间信息。

9、常见错误与代码优化:介绍遥感云平台数据分析过程中常见的错误和如何进行代码优化,以提高数据分析效率和精度。

10、Python遥感云数据分析专属包构建:介绍如何使用Python在遥感云平台上构建数据分析专属包,以方便多次使用和分享分析代码。

第四章、典型案例操作实践

11、机器学习分类算法案例:本案例联合Landsat等长时间序列影像和机器学习算法展示国家尺度的基本遥感分类过程。具体内容包括研究区影像统计、空间分层随机抽样、样本随机切分、时间序列影像预处理和合成、机器学习算法应用、分类后处理和精度评估等方面。

12、决策树森林分类算法案例:本案例联合L波段雷达和Landsat光学时间序列影像,使用决策树分类算法提取指定地区2007-2020年度森林分布图,并与JAXA年度森林产品进行空间比较。案例涉及多源数据联合使用、决策树分类算法构建、阈值动态优化、分类结果空间分析等方面。

13、洪涝灾害监测案例:本案例基于Sentinel-1 C波段雷达等影像,对省级尺度的特大暴雨灾害进行监测。案例内容包括Sentinel-1 C影像处理、多种水体识别算法构建、影像差异分析以及结果可视化等方面。。

14、干旱遥感监测案例:本案例使用40年历史的卫星遥感降雨数据产品如CHIRPS来监测省级尺度的特大干旱情况。案例内容包括气象数据基本处理、年和月尺度数据整合、长期平均值LPA/偏差计算,以及数据结果可视化等方面。

15、物候特征分析案例:本案例基于Landsat和MODIS等时间序列影像,通过植被指数变化分析典型地表植被多年的物候差异(样点尺度)和大尺度(如中国)的物候空间变化特征。案例内容包括时间序列影像合成、影像平滑(Smoothing)与间隙填充(Gap-filling)、结果可视化等方面。

16、森林植被健康状态监测案例本案例利用20年的MODIS植被指数,对选定区域的森林进行长期监测,并分析森林植被的绿化或褐变情况。涉及影像的连接和合成、趋势分析、空间统计以及可视化等方法。

17、生态环境质量动态监测案例:该案例使用RSEI遥感生态指数和Landsat

系列影像,对选定城市的生态状况进行快速监测。主要涉及的技术包括植被指数的计算、地表温度的提取、数据的归一化、主成分PCA分析、RSEI生态指数的构建以及结果的可视化等。

第五章、输入输出及数据资产高效管理

1.本地数据与云端交互:介绍如何将本地端csv、kml、矢量和栅格数据与云端数据相互转换,并讲解数据导出的方法。

2.服务器端数据批量下载:包括直接本地下载、影像集批量下载,以及如何快速下载大尺度和长时间序列数据产品,例如全球森林产品和20年的MODIS数据产品等。。

3.本地端数据上传与属性设置:包括earthengine命令使用,介绍如何上传少量本地端矢量与栅格数据并设置属性(小文件),以及如何批量上传数据并自动设置属性,还将介绍如何使用快速上传技巧上传超大影像文件,例如国产高分影像。

4、个人数据资产管理:介绍如何使用Python和earthengine命令行来管理个人数据资产,包括创建、删除、移动、重命名等操作,同时还会讲解如何批量取消上传/下载任务。

第六章、云端数据论文出版级可视化

1.Python可视化及主要软件包简介:介绍matplotlib和seaborn可视化程序包,讲解基本图形概念、图形构成以及快速绘制常用图形等内容。

2.研究区地形及样地分布图绘制:结合本地或云端矢量文件、云端地形数据等,绘制研究区示意图。涉及绘图流程、中文显示、配色美化等内容,还会介绍cpt-city精美调色板palette在线下载与本地端应用等。

3.研究区域影像覆盖统计和绘图:对指定区域的Landsat和Sentinel等系列影像的覆盖数量、无云影像覆盖情况进行统计,绘制区域影像统计图或像元级无云影像覆盖专题图。

4.样本光谱特征与物候特征等分析绘图:快速绘制不同类型样地的光谱和物候特征,动态下载并整合样点过去30年缩略图(thumbnails)和植被指数时间序列等。

5.分类结果专题图绘制及时空动态延时摄影Timelapse制作:单幅或多幅分类专题图绘制及配色美化,制作土地利用变化清晰的Timelapse,还会介绍动画文字添加等内容。

6.分类结果面积统计与绘图:基于云端的分类结果和矢量边界文件,统计不同区域不同地类面积,提取统计结果,以不同图形展示统计面积;制作土

地利用变化统计绘图等。

图片

图片

图片

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/150881.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

EtherCAT从站EEPROM组成信息详解(2):字8-15产品标识区

0 工具准备 1.EtherCAT从站EEPROM数据(本文使用DE3E-556步进电机驱动器)1 字8-字15产品标识区 1.1 产品标识区组成规范 对于不同厂家和型号的从站,主站是如何区分它们的呢?这就要提起SII的字8-字15区域存储的产品标识&#xff…

计算机视觉:人脸识别与检测

目录 前言 识别检测方法 本文方法 项目解析 完整代码及效果展示 前言 人脸识别作为一种生物特征识别技术,具有非侵扰性、非接触性、友好性和便捷性等优点。人脸识别通用的流程主要包括人脸检测、人脸裁剪、人脸校正、特征提取和人脸识别。人脸检测是从获取的图…

电磁场与电磁波part1--矢量分析

目录 1、方向导数 2、散度定理(高斯定理) 3、散度与旋度的比较 4、旋度定理(斯托克斯定理) 5、关于点乘、叉乘、梯度、散度、旋度的计算 ~~~~~~~~~~~~~~~~~~~~~~~~ 确认过眼神,是我看不懂的 ~~~~~~~~~~~~~~~~…

5. HTML中常用标签

5. html常用标签 5.1 标签语义 学习标签是有技巧的&#xff0c;重点是记住每个标签的语义。简单理解就是指标签的含义。即这个标签是用来干嘛的。 根据标签的语义&#xff0c;在合适的地方给一个最为合理的标签。可以让页面结构给清晰。 5.2 标题标签 <h1>-<h6>…

【C++ std::max_element std::min_element std::minmax_element】

一 、std::max_element 寻找范围 [first, last) 中的最大元素。 (1) 用 operator< 比较元素。 (3) 用给定的二元比较函数 comp 比较元素。 (2),(4) 同 (1,3) &#xff0c;但按照 policy 执行。这些重载仅若 std::is_execution_policy_v<std::decay_t > (C20 前)std:…

【C++】泛型编程 ④ ( 函数模板 与 普通函数 调用规则 | 类型自动转换 | 类型自动转换 + 显式指定泛型类型 )

文章目录 一、普通函数 与 函数模板 的调用规则 - 类型自动转换1、函数模板和重载函数2、类型自动转换3、代码示例 - 类型自动转换 二、普通函数 与 函数模板 的调用规则 - 类型自动转换 显式指定泛型类型1、类型自动转换 显式指定泛型类型2、代码示例 - 类型自动转换 显式指…

string的简单操作

目录 string的接口说明 构造 constructor operator 迭代器操作 begin( )和end( ) rbegin( ) 和 rend( ) 范围for和迭代器的关系 范围for 迭代器 容量 size lengtn max_size resize capacity reserve clear empty string类的元素访问 operator[ ] at fro…

构造函数和初始化列表的关系和区别【详解】

构造函数和初始化列表关系和区别&#xff0c;以及为什么有初始化列表&#xff0c;和它的好处 一、构造函数和初始化列表的关系和区别二、为什么有初始化列表三、使用初始化列表的好处 一、构造函数和初始化列表的关系和区别 百度百科这样定义初始化列表&#xff1a;与其他函数…

基于STM32的LoRaWAN无线通信网络设计与实现

LoRaWAN (Long Range Wide Area Network) 是一种低功耗的无线通信技术&#xff0c;用于构建广域物联网。本篇文章将介绍基于STM32微控制器的LoRaWAN无线通信网络的设计与实现&#xff0c;并提供相应的代码示例。 概述 LoRaWAN的无线通信技术采用低功耗长距离传输&#xff0c;…

STM32 独立看门狗

目录 1.独立看门狗介绍 2.独立看门狗本质 3.独立看门狗框图​编辑 4.独立看门狗时钟 5.预分频寄存器&#xff08;IWDG_PR)​编辑 6.重装载寄存器&#xff08;IWDG_RLR) 7.键寄存器&#xff08;IWDG_KR) 8.独立看门狗实验和代码示例 9.独立看门狗和窗口看门狗的异同点 …

【原创】java+swing+mysql个人日记管理系统设计与实现

摘要&#xff1a; 个人日记管理系统是一个可以记录、管理、存储和检索个人日记的应用程序。这个系统允许用户创建和管理多个日记帐户&#xff0c;每个帐户都可以有多个日记条目。用户可以随时添加、编辑或删除日记条目&#xff0c;并可以将这些条目按照主题或其他标准进行分类…

python科研绘图:绘制X-bar图

目录 1.X-bar 图的基本概念 2.X-bar 图的绘制过程 3.X-bar 图的优势 4.X-bar 图的绘制 1.X-bar 图的基本概念 X-bar控制图是一种统计工具&#xff0c;用于监控和控制生产过程中的质量变量。它是过程能力分析和统计过程控制&#xff08;SPC&#xff0c;Statistical Process…

React 高级教程

目录 前言setState函数式编程HooksMy HooksuseState定义原理函数式更新reduce 方法react 源码 useEffect定义原理无限循环 useCallback定义原理 useMemo定义比较 ReduxuseReducer定义使用应用 useContext 前言 在现代前端开发中&#xff0c;React已经成为了一种无法忽视的技术…

Java —— 多态

目录 1. 多态的概念 2. 多态实现条件 3. 重写 重写与重载的区别 4. 向上转型和向下转型 4.1 向上转型 4.2 向下转型 5. 多态的优缺点 6. 避免在构造方法中调用重写的方法 我们从字面上看"多态"两个字, 多态就是有多种状态/形态. 比如一个人可以有多种状态, …

基于STM32的无线通信系统设计与实现

【引言】 随着物联网的迅速发展&#xff0c;无线通信技术逐渐成为现代通信领域的关键技术之一。STM32作为一款广受欢迎的微控制器&#xff0c;具有丰富的外设资源和强大的计算能力&#xff0c;在无线通信系统设计中具有广泛的应用。本文将介绍如何基于STM32实现一个简单的无线通…

Go ZIP压缩文件读写操作

创建zip文件 golang提供了archive/zip包来处理zip压缩文件&#xff0c;下面通过一个简单的示例来展示golang如何创建zip压缩文件&#xff1a; func createZip(filename string) {// 缓存压缩文件内容buf : new(bytes.Buffer)// 创建zipwriter : zip.NewWriter(buf)defer writ…

Oracle OCP / MySQL OCP认证容易通过吗

诸多学员在首次考OCP时&#xff0c;不清楚要如何选择。在本文中&#xff0c;我会为大家进行讲解&#xff01; 选择OCP认证时需要考虑的几大项目&#xff1a; 授课老师师资经验 课程大纲 试听课程 考试通过率 业界口碑 服务质量 郭一军老师的OCP培训在业界培训的学员中已…

3ds Max渲染用专业显卡还是游戏显卡?

使用3dsmax建模时&#xff0c;会面临诸多选择&#xff0c;除了用vr还是cr的决策&#xff0c;硬件选择上也存在着疑问&#xff0c;比如用专业显卡还是消费级游戏显卡&#xff1f;一般来说&#xff0c;除非是特别专业的大型项目和软件&#xff0c;且预算在5位数以上&#xff0c;常…

【MySql】12- 实践篇(十)

文章目录 1. 为什么临时表可以重名?1.1 临时表的特性1.2 临时表的应用1.3 为什么临时表可以重名&#xff1f;1.4 临时表和主备复制 2. MySql内部临时表使用场景2.1 union 执行流程2.2 group by 执行流程2.3 group by 优化方法 -- 索引2.4 group by 优化方法 -- 直接排序 3. Me…

软件开发之路——关于架构师的一些书籍

文章目录 &#x1f4cb;前言&#x1f3af;什么是架构师&#x1f525;文末送书《高并发架构实战&#xff1a;从需求分析到系统设计》《中台架构与实现&#xff1a;基于DDD和微服务》《架构师的自我修炼&#xff1a;技术、架构和未来》《分布式系统架构&#xff1a;架构策略与难题…